Question:

Answer in detail.There were 3 times as many nickels as dimes & total of $25. How many of each coin were ther?

by Guest65898  |  earlier

0 LIKES UnLike

Answer in detail.There were 3 times as many nickels as dimes & total of $25. How many of each coin were ther?

 Tags:

   Report

6 ANSWERS


  1. Let there be x dimes ; then, there are 3x nickels.

    3x(5)+x(10)=2500

    15x+10x=2500

    25x=2500

    x=100 dimes = 1000 cents = $10.00

    3x=300 nickels = 1500 cents = $15.00

    Total $25.00


  2. Let

    D = number of dimes

    N = number of nickels

    Equation 1 -- There were 3 times as many nickels as dimes

    N = 3D

    << & total of $25.>>

    0.05N + 0.10D = 25

    <<How many of each coin were there? >>

    From Equation 1, N = 3D and substituting this in Equation 2,

    0.05(3D) + (0.1D) = 25

    0.15D + 0.1D = 25

    0.25D = 25

    D = 100

    Solving for "N" (using Equation 1)

    N = 3(D) = 3(100) = 300

    ANSWER:

    Number of dimes = 100

    Number of nickels = 300

    CHECK:

    0.05(300) + 0.1(100) = 15 + 10 = 25

  3. you've gotta do better than that.

    (3 nickels,1 dime = .25) x 100 = 25.00

    300 nickels, 100 dimes

  4. 300 nickels = $15

    100 dimes =  $10

    $10+$15 =$25

  5. You said you wanted detail, so here goes:

    x=dimes

    .1x+3*.05x=25

    .1x+.15x=25

    .25x=25

    x=100 dimes

    therefore, 300 nickels

  6. n = number of nickels

    d = number of dimes

    n = 3d

    0.05n + 0.10d = $25

    Solve the system of equations using substition:

    0.05(3d) + 0.10d = 25

    0.15d + 0.10d = 25

    0.25d = 25

    d = 100

    Use the value of d = 100 to find n in the first equation:

    n = 3(100)

    n= 300

    Therefore, n = 300, d = 100

    Check your answer:

    0.05(300) + 0.10(100) = $25

Question Stats

Latest activity: earlier.
This question has 6 answers.

BECOME A GUIDE

Share your knowledge and help people by answering questions.
Unanswered Questions