Question:

Are all complex differentiable functions continuous?

by  |  earlier

0 LIKES UnLike

If a function f, which maps an open subset A of the complex plane into the complex plane, is complex differentiable on A, does that mean it's continuous on A? I know that this holds for real-valued functions, but was curious if there was something about complex-valued functions that made things different.

 Tags:

   Report

2 ANSWERS


  1. Yes, differentiable implies continuous.

    Complex-valued does make a difference: if your function has a continuous derivative, it would be holomorphic (analytic), which is of course not true for real variables.

    Steve


  2. In complex we discuss whether the function is analytic not continuos

Question Stats

Latest activity: earlier.
This question has 2 answers.

BECOME A GUIDE

Share your knowledge and help people by answering questions.