Question:

Calculas question??????

by Guest59473  |  earlier

0 LIKES UnLike

I can't figure out how to integrate this.

∫ sin(nx)cos(mx) dx from 0 to 2pi

also n and m are integers

 Tags:

   Report

1 ANSWERS


  1. you have to integrate by parts

    ∫ sin(nx)cos(mx) dx

    u=sin(nx)                    dv=cos(mx) dx

    du=ncos(nx) dx             v=(sin(mx))/m

    ∫ sin(nx)cos(mx) dx=(sin(nx))(sin(mx))/m -∫ ((sin(mx))/m)ncos(nx) dx

    ∫ sin(nx)cos(mx) dx=(sin(nx))(sin(mx))/m -(n/m)∫ (sin(mx)cos(nx) dx

    now again integrate by parts

    u=cos(nx)                    dv=sin(mx) dx

    du=-nsin(nx) dx             v=(-cos(mx))/m

    ∫ sin(nx)cos(mx) dx=(sin(nx))(sin(mx))/m -(n/m)

    [(cos(nx))((-cos(mx))/m)- ∫-nsin(nx) ((-cos(mx))/m)dx]

    ∫ sin(nx)cos(mx) dx=(sin(nx))(sin(mx))/m -(n/m)

    [(cos(nx))((-cos(mx))/m)- (n/m) ∫sin(nx) (cos(mx))dx]

    ∫ sin(nx)cos(mx) dx=(sin(nx))(sin(mx))/m +

    (n/m^2)(cos(nx))((-cos(mx)))+ (n^2/m^2) ∫sin(nx) (cos(mx))dx

    ∫ sin(nx)cos(mx) dx - (n^2/m^2) ∫sin(nx) (cos(mx))dx =

    (sin(nx))(sin(mx))/m +(n/m^2)(cos(nx))(-cos(mx))

    (1-(n^2/m^2))(∫ sin(nx)cos(mx) dx) =

    (sin(nx))(sin(mx))/m +(n/m^2)(cos(nx))(-cos(mx))

    ∫ sin(nx)cos(mx dx =

    ((sin(nx))(sin(mx))/m +(n/m^2)(cos(nx))(-cos(mx)))/

    ((m^2-n^2)/m^2)

    ∫ sin(nx)cos(mx dx =

    ((msin(nx)sin(mx)/(m^2-n^2)) +(n/m^2-n^2)(cos(nx))(-cos(mx)))

    at zero the answer is n/(m^2-n^2)

    at 2pi the answer is also n/(m^2-n^2)

    so the answer is zero  

Question Stats

Latest activity: earlier.
This question has 1 answers.

BECOME A GUIDE

Share your knowledge and help people by answering questions.