Question:

Calculus question - Proving the formula for tan?

by  |  earlier

0 LIKES UnLike

I don't get why the integral of 1/(t^2+a) = 1/(a)^1/2 arctan(t/ (a)^1/2))+C. I proved it about a week ago in the library when there was nothing else to do but now I can't find that scrap of paper!

 Tags:

   Report

1 ANSWERS


  1. ∫ 1/( t² + a ) dt

    ——————————————————————————————————————

    Let √(a)·tan(x) = t

    Then √(a)·sec²(x)dx = dt

    ——————————————————————————————————————

    Substitute for t and dt:

    → ∫ 1/( [√(a)·tan(x)]² + a ) √(a)·sec²(x)dx

    = ∫ 1/( a·tan²(x) + a ) √(a)·sec²(x)dx

    Factor out 1/a and combine it with the √(a):

    = ∫ (1/a) 1/( tan²(x) + 1 ) √(a)·sec²(x)dx

    = 1/√(a) ∫ 1/( tan²(x) + 1 ) sec²(x)dx

    ——————————————————————————————————————

    Use the Pythagorean trigonometric identity:

    sin²(x) + cos²(x) = 1

    sin²(x)/cos²(x) + cos²(x)/cos²(x) = 1/cos²(x)

    tan²(x) + 1 = sec²(x)

    ——————————————————————————————————————

    Change tangent into secant, reduce, and integrate:

    → 1/√(a) ∫ 1/( sec²(x) ) sec²(x)dx

    = 1/√(a) ∫ 1 dx

    = x / √(a) + C

    ——————————————————————————————————————

    Solve for x in the previous substitution equation:

    √(a)·tan(x) = t

    x = arctan[ t/√(a) ]

    ——————————————————————————————————————

    Reverse the substitution:

    → arctan[ t/√(a)] /√(a) + C

Question Stats

Latest activity: earlier.
This question has 1 answers.

BECOME A GUIDE

Share your knowledge and help people by answering questions.