Question:

Can any one solve this integral please?

by  |  earlier

0 LIKES UnLike

integration( (24*x^3)/( (4+x^2)^(5/2) ) for x from (2*sqare root of 3) to infinity ) with the subsitution of x = tan u

 Tags:

   Report

3 ANSWERS


  1. ∫ {24x^3 / [(4 + x^2)^(5/2)]} dx =

    as you suggest, let:

    x = 2 tan u →

    dx = 2 sec^2 u du

    thus, substituting, you get:

    ∫ {24(2 tan u)^3 / [4 + (2 tan u)^2]^(5/2)} 2 sec^2 u du =

    ∫ {24(8 tan^3 u)  / [4 + (4 tan^2 u) ]^(5/2)} 2 sec^2 u du =

    ∫ {24(8)(2) tan^3 u  / [4 + (4 tan^2 u) ]^(5/2)}  sec^2 u du =

    factor out 4 as:

    ∫ {24(8)(2) tan^3 u  / [4(1 + tan^2 u)]^(5/2)}  sec^2 u du =

    ∫ { 24(8)(2) tan^3 u  /{[4^(5/2)](1 + tan^2 u)^(5/2)} } sec^2 u du =

    ∫ { 24(8)(2) tan^3 u  /[32 (1 + tan^2 u)^(5/2)] } sec^2 u du =

    ∫ { 12 tan^3 u  /[(1 + tan^2 u)^(5/2)] } sec^2 u du =

    12 ∫ { tan^3 u  /[(1 + tan^2 u)^(5/2)] } sec^2 u du =

    replace 1 + tan^2 u with sec^2 u, yielding:

    12 ∫ { tan^3 u  /[(sec^2 u)^(5/2)] } sec^2 u du =

    12 ∫ { tan^3 u  /[(sec^5 u) } sec^2 u du =

    then, sec^2 u canceling out, you get:

    12 ∫ ( tan^3 u /sec^3 u)  du =

    12 ∫ ( tan u /sec u)^3  du =

    expressing the integrand in terms of sinx, cosx:

    12 ∫ [(sin u/cos u)/ (1 /cos u)]^3  du =

    12 ∫ [(sin u/cos u) cos u]^3  du =

    cos u canceling out,

    12 ∫ sin^3 u du =

    rewrite it as:

    12 ∫ (sin^2 u) (sin u) du =

    replace sin^2 u with (1 - cos^2 u):

    12 ∫ (1 - cos^2 u) (sin u) du =

    expand and split it into:

    12 ∫ (sin u - cos^2 u sin u) du =

    12 ∫ sin u du - 12 ∫ cos^2 u sin u du =

    as you know, sin u du = - d(cos u), thus:

    12 ∫ - d(cos u) - 12 ∫ cos^2 u [- d(cos u)] =

    -12 ∫ d(cos u) + 12 ∫ cos^2 u d(cos u) =

    -12 cos u + 12 [cos^(2+1) u]/(2+1) + C =

    -12 cos u + (12/3) cos^3 u + C =

    -12 cos u + 4 cos^3 u + C

    summing up,

    x = 2 tan u

    thus

    tan u = (x/2) →

    therefore, rewriting cos u in terms of  tan u (i.e. x/2), you get:

    sec^2 u = 1 + tan^2 u →

    sec u = √(1 + tan^2) →

    cos u = 1/√(1 + tan^2) = 1/√[1 + (x/2)^2] = 1/√{1 + [(x^2)/4} = 1/√[(4 + x^2)/4] →

    cos u = 2/√(4 + x^2)

    thus, substituting back, you get:

    -12 cos u + 4 cos^3 u + C  = -12 [2/√(4 + x^2)]  + 4 [2/√(4 + x^2)]^3 + C =

    -12 [2/√(4 + x^2)]  + 4 [8/√(4 + x^2)^3] + C =

    [- 24/√(4 + x^2)]  + [32 /√(4 + x^2)^3]  + C  that is the antiderivative

    then, evaluating your improper integral, you get:

    lim {[- 24/√(4 +x^2)] + [32/√(4 +x^2)^3]} - { {- 24/√[4 +(2√3)^2]} + {32/√[4 +(2√3)^2]^3} } =

    x → ∞

    0 + 0 - { [- 24/√(4 +12)] + [32/√(4 + 12)^3] } =

    (24/√16) - [32/√(16)^3]  =

    (24/4) - (32/64) = 6 - (1/2) = 11/2

    thus your integral converges to (11/2)

    (I've just checked this: it's correct)

    I hope it helps...

    Bye!


  2. Though it can be done by substitution x = 2tanu, it is better to use

    4 + x² = u => 2x dx = du

    Also, x = 2√3 => u = 4 and x → ∞ => u → ∞

    => ∫(24*x³ )/(4+x^2)^(5/2) dx

    = 12 ∫(u -4) / u^(5/2) du

    = 12 [u^(-3/2) - 4u^(-5/2)] du

    = 12 [ -2u^(-1/2) - (8/3)u^(-3/2) ] + c

    Plugging the limits, u = 4 to ∞,

    = 12[0 + 1/2 + 1]

    = 18.

  3. No, if u = 4 + x², then u(2√3) = 16.

    Let x = 2tanu ==> dx = 2sec²u du

    u(π/2) -> ∞; u(π/3) = 2√3

    ...π/2

    ∫    (24)(8)tan³u)(2)sec²u/(32sec^5u)du

    ...π/3

    ...π/2

    =∫    (384tan³u)/(32sec³u)du

    ...π/3

    .......π/2

    = 12∫    (sin³u)(cos³)/(cos³u) du

    ......π/3

    .......π/2

    = 12∫    sin³u du

    ......π/3

    ..................................π/2

    =12[(-sin²ucosu)/2 -(2/3)cosu]  = 25/4

    ..................................π/3

Question Stats

Latest activity: earlier.
This question has 3 answers.

BECOME A GUIDE

Share your knowledge and help people by answering questions.
Unanswered Questions