Question:

Can some one explain in english the details of electron transport in the mitochondrion?

by  |  earlier

0 LIKES UnLike

can some one explain in english the details of electron transport in the mitochondrion

 Tags:

   Report

1 ANSWERS


  1. An electron transport chain associates electron carriers (such as NADH and FADH2) and mediating biochemical reactions that produce adenosine triphosphate (ATP), which is a major energy intermediate in living organisms. Only two sources of energy are available to biosynthesize organic molecules and maintain biochemical and kinetic processes in living organisms: oxidation-reduction (redox) reactions and some forms of radiation, such as sunlight (used for photosynthesis). Organisms that use redox reactions to produce ATP are called chemotrophs. Organisms that use sunlight are called phototrophs. Both chemotrophs and phototrophs use electron transport chains to convert energy into ATP. This is achieved through a three-step process:

    Gradually sap energy from high-energy electrons in a series of individual steps.

    Use that energy to forcibly unbalance the proton concentration across the membrane, creating an electrochemical gradient.

    Use the energy released by the drive to re-balance the proton distribution as a means of producing ATP. Both the respiratory and photosynthetic electron transport chains are major sites of premature electron leakage to oxygen, thus being major sites of superoxide production and drivers of oxidative stress.

    electron transport chain in mitochondria

    The cells of all eukaryotes (all animals, plants, fungi, algae, protozoa – in other words, all living things except bacteria and archaea) contain intracellular organelles called mitochondria, which produce ATP. Energy sources such as glucose are initially metabolized in the cytoplasm. The products are imported into mitochondria. Mitochondria continue the process of catabolism using metabolic pathways including the Krebs cycle, fatty acid oxidation, and amino acid oxidation.

    The end result of these pathways is the production of two kinds of energy-rich electron donors, NADH and FADH2. Electrons from these donors are passed through an electron transport chain to oxygen, which is reduced to water. This is a multi-step redox process that occurs on the mitochondrial inner membrane. The enzymes that catalyze these reactions have the remarkable ability to simultaneously create a proton gradient across the membrane, producing a thermodynamically unlikely high-energy state with the potential to do work. Although electron transport occurs with great efficiency, a small percentage of electrons are prematurely leaked to oxygen, resulting in the formation of the toxic free-radical superoxide.

    The similarity between intracellular mitochondria and free-living bacteria is striking. The known structural, functional, and DNA similarities between mitochondria and bacteria provide strong evidence that mitochondria evolved from intracellular prokaryotic symbionts that took up residence in primitive eukaryotic cells.Four membrane-bound complexes have been identified in mitochondria. Each is an extremely complex transmembrane structure that is embedded in the inner membrane. Three of them are proton pumps. The structures are electrically connected by lipid-soluble electron carriers and water-soluble electron carriers. The overall electron transport chain

Question Stats

Latest activity: earlier.
This question has 1 answers.

BECOME A GUIDE

Share your knowledge and help people by answering questions.
Unanswered Questions