Question:

Can someone tell me the antiderivative to the square root of (25-(x^2))?

by  |  earlier

0 LIKES UnLike

If you could, please find the antiderivative using the "power rule" of antiderivatives. Please show all your work step by step and clearly, if you do I promise to select you as best answer

 Tags:

   Report

1 ANSWERS


  1. ∫ √(25 - x²) dx =

    let: x = 5 sin u → dx = 5 cos u du

    sin u = (x/5) → u = arcsin(x/5)

    then substitute, yielding:

    ∫ √(25 - x²) dx = ∫ √[25 - (5 sin u)²] 5 cos u du =

    ∫ [√(25 - 25 sin²u)] 5 cos u du =

    factor out 25:

    ∫ {√[25(1 - sin²u)]} 5 cos u du =

    ∫ [5√(1 - sin²u)] 5 cos u du =

    take out the constants:

    25 ∫ [√(cos²u)] cos u du =

    25 ∫ cos u cos u du =

    25 ∫ cos²u du =

    according to half-angle identities, replace cos²u with (1/2)[1 + cos(2u)]:

    25 ∫ (1/2)[1 + cos(2u)] du =

    (25/2) ∫ [1 + cos(2u)] du =

    (25/2) ∫ du + (25/2) ∫ cos(2u) du =

    (25/2)u + (25/2) (1/2)sin(2u) + C =

    (25/2)u + (25/4) sin(2u) + C

    that, due to double-angle identities, is the same as:

    (25/2)u + (25/4) (2 sin u cos u) + C =

    (25/2)u + (25/2) sin u cos u + C

    now recall:

    x = 5 sin u →

    sin u = (x/5) →

    u = arcsin(x/5)

    thus cos u = √(1 - sin²u) = √[1 - (x/5)²] = √[1 - (x²/25)] = √[(25 - x²) /25] =

    (1/5)√(25 - x²)

    thus, substituting back, you get:

    (25/2)u + (25/2) sin u cos u + C = (25/2) arcsin(x/5) + (25/2)(x/5)(1/5)√(25 - x²) + C

    and therefore:

    ∫ √(25 - x²) dx = (25/2)arcsin(x/5) + (1/2)x√(25 - x²) + C

    I hope it helps...

    Bye!

Question Stats

Latest activity: earlier.
This question has 1 answers.

BECOME A GUIDE

Share your knowledge and help people by answering questions.