Question:

Can u integrate this for me?

by  |  earlier

0 LIKES UnLike

sin^2(2x+5) wid respect to x , also explain the steps used.

 Tags:

   Report

4 ANSWERS


  1. Use the identity sin^2(t) = (1 + cos(2t))/2.


  2. First we use this trigonometric identity:

    sin^2(a) = [1-cos(2a)]/2

    Or in this case:

    sin^2(2x+5) = [1-cos(4x+10)]/2

    now we split the identity:

    1/2 - [cos(4x+10)]/2

    we are ready to integrate; but for the second part of this we must find the proper differential. Then we make u =  4x+10; and du = 4dx. Now we integrate:

    ∫1/2 dx - ∫4[cos(4x10)]/8 dx

    or:

    ∫1/2 dx - 1/8∫[cos(4x+10)] 4dx  

    finally answer is:

    x/2 - [sin(4x+10)]/8 + c  (when c is the integration constant)


  3. Let's use "integration by parts" to solve this.

    Let u=sin(2x+5)

         dv=sin(2x+5)dx

         du=2cos(2x+5)dx

         v=-1/2cos(2x+5)

    Then

    ∫ sin^2(2x+5)dx = (-1/2)sin(2x+5)(cos(2x+5) + (1/2) ∫cos^2(2x+5) dx

    Moving a term to the left gives

    ∫ sin^2(2x+5)dx - (1/2)∫ cos^2(2x+5)dx = (-1/2)sin(2x+5)cos(2x+5)

    using trig identities gives

    ∫ sin^2(2x+5)dx - (1/2)∫[1-sin^2(2x+5)]dx = (-1/2)sin(2x+5)cos(2x+5)

    ∫ sin^2(2x+5)dx - (1/2)x + (1/2)∫ sin^2(2x+5)dx = (-1/2)sin(2x+5)cos(2x+5)

    (3/2)∫sin^2(2x+5)dx = (1/2)x -(1/2)sin(2x+5)cos(2x+5)

    ∫sin^2(2x+5)dx = (2/3)[(1/2)x - (1/2)sin(2x+5)cos(2x+5)

    ∫sin^2(2x+5)dx = (1/3)x - (1/3)sin(2x+5)(cos(2x+5) + C  

  4. Let 2x+5 =u

    2 dx = du

    dx = (1/2) du

    The integral becomes

    (1/2) ∫ sin^2(u) du

    =(1/2)  Ã¢ÂˆÂ« (1-cos(2u))/2 du

    =(1/4)  Ã¢ÂˆÂ«  du - (1/4)  Ã¢ÂˆÂ« cos(2u) du

    (1/4) u -(1/4) sin(2u) /2

    =u/4 -sin(2u)/8 +C

    =(2x+5) / 4 - sin (4x+10) / 8 + C

Question Stats

Latest activity: earlier.
This question has 4 answers.

BECOME A GUIDE

Share your knowledge and help people by answering questions.