Question:

Can you explain to me these folowing theories as simply as possible?

by  |  earlier

0 LIKES UnLike

the Everything Theory

String theory

Multi verse theory

and what is the Singularity?

I need to know this im so curious and im 13. i kinda understand it but not really. id really appreciate some answers best one gets 10 points!!!

 Tags:

   Report

2 ANSWERS


  1. TOE - single equation that explains every moment of a system (universe)

    ST - belief that particles consist of tiny vibrations which define the object

    MVT - belief that at every instance an infinite number of possibilities exist and therefore an infinite number of worlds to house them all

    S - the hard center of a tootsie roll

    All of that esoteric gibberish says that TOE is only calculable in small quantities and that increasing the quantities to factors which resemble our world introduces mathematical complications. In other words, we're a long way from understanding our universe.

    As for repeating time, that seems to fall within the scope of philosophy, not physics. To put it another way, it conjures up the age old saying that 'those who forget the past are condemned to repeat it.' While time is a man-made component of nature, at slow speeds it appears constant and linear. At higher speeds, relativity takes over.


  2. The Theory of Everything is a term for the ultimate theory of the universe—a set of equations capable of describing all phenomena that have been observed, or that will ever be observed (1). It is the modern incarnation of the reductionist ideal of the ancient Greeks, an approach to the natural world that has been fabulously successful in bettering the lot of mankind and continues in many people's minds to be the central paradigm of physics. A special case of this idea, and also a beautiful instance of it, is the equation of conventional nonrelativistic quantum mechanics, which describes the everyday world of human beings—air, water, rocks, fire, people, and so forth. The details of this equation are less important than the fact that it can be written down simply and is completely specified by a handful of known quantities: the charge and mass of the electron, the charges and masses of the atomic nuclei, and Planck's constant. For experts we write  1

    where  2

      

    The symbols Zα and Mα are the atomic number and mass of the αth nucleus, Rα is the location of this nucleus, e and m are the electron charge and mass, rj is the location of the jth electron, and  is Planck's constant.

    Less immediate things in the universe, such as the planet Jupiter, nuclear fission, the sun, or isotopic abundances of elements in space are not described by this equation, because important elements such as gravity and nuclear interactions are missing. But except for light, which is easily included, and possibly gravity, these missing parts are irrelevant to people-scale phenomena. Eqs. 1 and 2 are, for all practical purposes, the Theory of Everything for our everyday world.

    However, it is obvious glancing through this list that the Theory of Everything is not even remotely a theory of every thing (2). We know this equation is correct because it has been solved accurately for small numbers of particles (isolated atoms and small molecules) and found to agree in minute detail with experiment (3–5). However, it cannot be solved accurately when the number of particles exceeds about 10. No computer existing, or that will ever exist, can break this barrier because it is a catastrophe of dimension. If the amount of computer memory required to represent the quantum wavefunction of one particle is N then the amount required to represent the wavefunction of k particles is Nk. It is possible to perform approximate calculations for larger systems, and it is through such calculations that we have learned why atoms have the size they do, why chemical bonds have the length and strength they do, why solid matter has the elastic properties it does, why some things are transparent while others reflect or absorb light (6). With a little more experimental input for guidance it is even possible to predict atomic conformations of small molecules, simple chemical reaction rates, structural phase transitions, ferromagnetism, and sometimes even superconducting transition temperatures (7). But the schemes for approximating are not first-principles deductions but are rather art keyed to experiment, and thus tend to be the least reliable precisely when reliability is most needed, i.e., when experimental information is scarce, the physical behavior has no precedent, and the key questions have not yet been identified. There are many notorious failures of alleged ab initio computation methods, including the phase diagram of liquid 3He and the entire phenomenonology of high-temperature superconductors (8–10). Predicting protein functionality or the behavior of the human brain from these equations is patently absurd. So the triumph of the reductionism of the Greeks is a pyrrhic victory: We have succeeded in reducing all of ordinary physical behavior to a simple, correct Theory of Everything only to discover that it has revealed exactly nothing about many things of great importance.

    In light of this fact it strikes a thinking person as odd that the parameters e, , and m appearing in these equations may be measured accurately in laboratory experiments involving large numbers of particles. The electron charge, for example, may be accurately measured by passing current through an electrochemical cell, plating out metal atoms, and measuring the mass deposited, the separation of the atoms in the crystal being known from x-ray diffraction (11). Simple electrical measurements performed on superconducting rings determine to high accuracy the quantity the quantum of magnetic flux hc/2e (11). A version of this phenomenon also is seen in superfluid helium, where coupling to electromagnetism is irrelevant (12). Four-point conductance measurements on semiconductors in the quantum Hall regime accurately determine the quantity e2/h (13). The magnetic field generated by a superconductor that is mechanically rotated measures e/mc (14, 15). These things are clearly true, yet they cannot be deduced by direct calculation from the Theory of Everything, for exact results cannot be predicted by approximate calculations. This point is still not understood by many professional physicists, who find it easier to believe that a deductive link exists and has only to be discovered than to face the truth that there is no link. But it is true nonetheless. Experiments of this kind work because there are higher organizing principles in nature that make them work. The Josephson quantum is exact because of the principle of continuous symmetry breaking (16). The quantum Hall effect is exact because of localization (17). Neither of these things can be deduced from microscopics, and both are transcendent, in that they would continue to be true and to lead to exact results even if the Theory of Everything were changed. Thus the existence of these effects is profoundly important, for it shows us that for at least some fundamental things in nature the Theory of Everything is irrelevant. P. W. Anderson's famous and apt description of this state of affairs is “more is different” (2).

    The emergent physical phenomena regulated by higher organizing principles have a property, namely their insensitivity to microscopics, that is directly relevant to the broad question of what is knowable in the deepest sense of the term. The low-energy excitation spectrum of a conventional superconductor, for example, is completely generic and is characterized by a handful of parameters that may be determined experimentally but cannot, in general, be computed from first principles. An even more trivial example is the low-energy excitation spectrum of a conventional crystalline insulator, which consists of transverse and longitudinal sound and nothing else, regardless of details. It is rather obvious that one does not need to prove the existence of sound in a solid, for it follows from the existence of elastic moduli at long length scales, which in turn follows from the spontaneous breaking of translational and rotational symmetry characteristic of the crystalline state (16). Conversely, one therefore learns little about the atomic structure of a crystalline solid by measuring its acoustics.

    The crystalline state is the simplest known example of a quantum protectorate, a stable state of matter whose generic low-energy properties are determined by a higher organizing principle and nothing else. There are many of these, the classic prototype being the Landau fermi liquid, the state of matter represented by conventional metals and normal 3He (18). Landau realized that the existence of well-defined fermionic quasiparticles at a fermi surface was a universal property of such systems independent of microscopic details, and he eventually abstracted this to the more general idea that low-energy elementary excitation spectra were generic and characteristic of distinct stable states of matter. Other important quantum protectorates include superfluidity in Bose liquids such as 4He and the newly discovered atomic condensates (19–21), superconductivity (22, 23), band insulation (24), ferromagnetism (25), antiferromagnetism (26), and the quantum Hall states (27). The low-energy excited quantum states of these systems are particles in exactly the same sense that the electron in the vacuum of quantum electrodynamics is a particle: They carry momentum, energy, spin, and charge, scatter off one another according to simple rules, obey fermi or bose statistics depending on their nature, and in some cases are even “relativistic,” in the sense of being described quantitively by Dirac or Klein-Gordon equations at low energy scales. Yet they are not elementary, and, as in the case of sound, simply do not exist outside the context of the stable state of matter in which they live. These quantum protectorates, with their associated emergent behavior, provide us with explicit demonstrations that the underlying microscopic theory can easily have no measurable consequences whatsoever at low energies. The nature of the underlying theory is unknowable until one raises the energy scale sufficiently to escape protection.

    Thus far we have addressed the behavior of matter at comparatively low energies. But why should the universe be any different? The vacuum of space-time has a number of properties (relativity, renormalizability, gauge forces, fractional quantum numbers) that ordinary matter does not possess, and this state of affairs is alleged to be something extraordinary distinguishing the matter making up the universe from the matter we see in the laboratory (28). But this is incorrect. It has been known since the early 1970s that renormalizability is an emergent property of ordinary matter either in stable quantum phases, such as the superconducting state, or at particular zero-temperature phase transitions between such states called quantum critical points (29, 30). In either case the low-energy excitation spectrum becomes more and more generic and less and less sensitive to microscopic details as the energ

Question Stats

Latest activity: earlier.
This question has 2 answers.

BECOME A GUIDE

Share your knowledge and help people by answering questions.
Unanswered Questions