Question:

Evaluate the integral?

by  |  earlier

0 LIKES UnLike

How do I do this problem? please show me step by step. Thanks.

evaluate the integral

∫ x^2 cos mxdx

 Tags:

   Report

2 ANSWERS


  1. ∫ x^2 cos mxdx

    Integrate by parts

    let u = x² ; du = 2xdx

    dv = cos(mx)dx ; v = ∫cos(mx)dx = sin(mx)/m + C

    ∫ x² cos mxdx  = x² sin(mx)/m - 2/m∫x sin(mx)dx + C

    Integrate by parts

    ∫x sin(mx)dx

    u =x ; du = dx

    dv = sin(mx)dx ; v = ∫sin(mx)dx = -cos(mx)/m + C

    ∫x sin(mx)dx  = -x cos(mx)/m + 1/m∫cos(mx)dx

    ∫x sin(mx)dx  = -x cos(mx)/m + sin(mx)/m² + C

    ∫ x² cos mxdx  = x² sin(mx)/m - 2/m[-x cos(mx)/m + sin(mx)/m²] + C

    ∫ x² cos mxdx  = x² sin(mx)/m + 2x cos(mx)/m² - 2sin(mx)/m³ + C


  2. Use integration by parts to reduce the powers of x² by differentiation until you get cosine by itself:

    ∫ x²·cos( m·x ) dx

    Let u = x²

    Then du = 2·x dx

    Let dv = cos( m·x ) dx

    Then v = sin( m·x )/m

    → u·v - ∫ v du

    = [ x² ] · [ sin( m·x )/m ]  - ∫ [ sin( m·x )/m ] · [ 2·x dx ]

    = x²·sin( m·x )/m - ∫ 2·x·sin( m·x )/m dx

    Let q = 2·x

    Then dq = 2 dx

    Let dr = sin( m·x )/m dx

    Then r = -cos( m·x )/m²

    →  x²·sin( m·x )/m - { q·r - ∫ r dq }

    = x²·sin( m·x )/m - { [ 2·x ] · [ -cos( m·x )/m² ] - ∫ [ -cos( m·x )/m² ] [ 2 dx ] }

    = x²·sin( m·x )/m + 2·x·cos( m·x )/m² - ∫ 2·cos( m·x )/m² dx

    = x²·sin( m·x )/m + 2·x·cos( m·x )/m² - 2·sin( m·x )/m³ + C
You're reading: Evaluate the integral?

Question Stats

Latest activity: earlier.
This question has 2 answers.

BECOME A GUIDE

Share your knowledge and help people by answering questions.
Unanswered Questions