Question:

Evaluate the integral (x^2+3)/(x^2+2x+3)^2 using partial fractions?

by  |  earlier

0 LIKES UnLike

Evaluate the integral (x^2+3)/(x^2+2x+3)^2 using partial fractions?

 Tags:

   Report

1 ANSWERS


  1. very tough integral.....

    ∫ [(x²+ 3) / (x²+ 2x +3)²] dx =

    the denominator is already completely factored, thus you can set

    partial fraction decomposition as:

    (x²+ 3)/(x²+ 2x +3)² = (Ax + B)/(x²+ 2x +3) + (Cx + D)/(x²+ 2x +3)² →

    find out the LCD at right side:

    (x²+ 3) /(x²+ 2x +3)² = [(Ax + B)(x²+ 2x +3) + (Cx + D)] /(x²+ 2x +3)² →

    equate the numerators:

    (x²+ 3) = [(Ax + B)(x²+ 2x +3) + (Cx + D)] →

    x² + 3 = Ax³ + 2Ax² + 3Ax+ Bx²+ 2Bx +3B + Cx + D →

    x² + 3 = Ax³ + (2A + B)x²+ (3A + 2B + C)x + (3B + D)

    yielding the four unknowns system:

    | A = 0

    | 2A + B = 1

    | 3A + 2B + C = 0

    | 3B + D = 3

    | A = 0

    | 0 + B = 1 → B = 1

    | 0 + 2(1) + C = 0 → C = - 2

    | 3B + D = 3 → D = 3 - 3(1) = 0

    | A = 0

    | B = 1

    | C = - 2

    | D = 0

    therefore (see above):

    (x²+ 3)/(x²+ 2x +3)² = (Ax + B)/(x²+ 2x +3) + (Cx + D)/(x²+ 2x +3)² →

    (x²+ 3)/(x²+ 2x +3)² =  1 /(x²+ 2x +3) - 2x /(x²+ 2x +3)²

    your integral thus becoming:

    ∫ [(x²+ 3) / (x²+ 2x +3)²] dx = ∫ {[1 /(x²+ 2x + 3)] - [2x /(x²+ 2x +3)²]} dx =

    break it up into:

    ∫ [1 /(x² + 2x + 3)] dx - ∫ [2x /(x²+ 2x +3)²] dx =

    now, attempting to turn the numerator of the second integrand into the derivative

    of the square base in the respective denominator, add (2 - 2) to the numerator:

    ∫ [1 /(x² + 2x + 3)] dx - ∫ [(2x + 2 - 2)/(x²+ 2x +3)²] dx =

    split it into:

    ∫ [1 /(x² + 2x + 3)] dx - ∫ {[(2x + 2)/(x²+ 2x +3)²] - [2 /(x²+ 2x +3)²]} dx =

    ∫ [1 /(x² + 2x + 3)] dx - ∫ [(2x + 2)/(x²+ 2x +3)²] dx + ∫ [2 /(x²+ 2x +3)²] dx =

    ∫ [1 /(x² + 2x + 3)] dx - ∫ [d(x²+ 2x +3)] /(x²+ 2x +3)² + ∫ [2 /(x²+ 2x +3)²] dx =

    ∫ [1 /(x² + 2x + 3)] dx - ∫ (x²+ 2x +3)^(-2) d(x²+ 2x +3) + ∫ [2 /(x²+ 2x +3)²] dx =

    ∫ [1 /(x² + 2x + 3)] dx - [(x²+ 2x +3)^(-2+1)]/(-2+1) + ∫ [2 /(x²+ 2x +3)²] dx =

    ∫ [1 /(x² + 2x + 3)] dx - [(x²+ 2x +3)^(-1)]/(-1) + ∫ [2 /(x²+ 2x +3)²] dx =

    ∫ [1 /(x² + 2x + 3)] dx + [1 /(x²+ 2x +3)] + ∫ [2 /(x²+ 2x +3)²] dx =

    ∫ [1 /(x² + 2x + 3)] dx + ∫ [2 /(x²+ 2x +3)²] dx + [1 /(x²+ 2x +3)] =

    let's now complete the square in the denominator of the second integral:

    x²+ 2x + 3 =

    (x²+ 2x +1) + 2 =

    (x + 1)² + 2

    thus:

    ∫ [1 /(x² + 2x + 3)] dx + ∫ {2 /[(x + 1)² + 2]²} dx + [1 /(x²+ 2x +3)] =

    add [(x + 1)²- (x + 1)²] to the numerator of the second integrand:

    ∫ [1 /(x² + 2x + 3)] dx + ∫ {[2 + (x + 1)²- (x + 1)²]/[(x + 1)² + 2]²} dx + [1 /(x²+ 2x +3)] =

    then distribute and split as:

    ∫ [1 /(x² + 2x + 3)] dx + ∫ { {[2 + (x +1)²] /[(x +1)² + 2]²} - {(x +1)² /[(x + 1)²+ 2]²} } dx +

    [1 /(x²+ 2x + 3)] =

    ∫ [1 /(x² + 2x + 3)] dx + ∫ {[2 + (x + 1)²] /[(x +1)² + 2]²} dx - ∫ {(x +1)² /[(x +1)²+ 2]²} dx +

    [1 /(x²+ 2x + 3)] =

    simplify the second integrand:

    ∫ [1 /(x² + 2x + 3)] dx + ∫ {1/[(x + 1)² + 2]} dx - ∫ {(x + 1)² /[(x + 1)² + 2]²} dx +

    [1 /(x²+ 2x + 3)] =

    then expand it into:

    ∫ [1 /(x² + 2x + 3)] dx + ∫ {1/[(x² + 2x + 1) + 2]} dx - ∫ {(x + 1)² /[(x + 1)² + 2]²} dx +

    [1 /(x²+ 2x + 3)] =

    ∫ [1 /(x² + 2x + 3)] dx + ∫ [1/ (x² + 2x + 3)] dx - ∫ {(x + 1)² /[(x + 1)² + 2]²} dx +

    [1 /(x²+ 2x + 3)] =

    the first and the second integral are similar, thus add them together into:

    2 ∫ [1 /(x² + 2x + 3)] dx - ∫ {(x + 1)² /[(x + 1)² + 2]²} dx +

    [1 /(x²+ 2x + 3)] =

    rewrite the denominator of the first integral as (see above):

    2 ∫ dx /[(x + 1)² + 2]  - ∫ {(x + 1)² /[(x + 1)² + 2]²} dx +

    [1 /(x²+ 2x + 3)] =

    then factor out 2 from the denominator:

    2 ∫ dx /{2 [(1/2)(x + 1)² + 1]}  - ∫ {(x + 1)² /[(x + 1)² + 2]²} dx +

    [1 /(x²+ 2x + 3)] =

    (2/2) ∫ dx /[(1/2)(x + 1)² + 1]  - ∫ {(x + 1)² /[(x + 1)² + 2]²} dx +

    [1 /(x²+ 2x + 3)] =

    include (1/2) in the square as:

    ∫ dx /{[(1/√2)(x + 1)]² + 1} - ∫ {(x + 1)² /[(x + 1)² + 2]²} dx +

    [1 /(x²+ 2x + 3)] =

    expand the base of the square into:

    ∫ dx /{[(x/√2) + (1/√2)]² + 1} - ∫ {(x + 1)² /[(x + 1)² + 2]²} dx +

    [1 /(x²+ 2x + 3)] =

    then multiply and divide the first integral by √2, in order to turn the numerator

    into the derivative of [(x/√2) + (1/√2)] (i.e. (1/√2)):

    √2 ∫ (1/√2)dx /{[(x/√2) + (1/√2)]² + 1} - ∫ {(x + 1)² /[(x + 1)² + 2]²} dx +

    [1 /(x²+ 2x + 3)] =

    √2 ∫ {d[(x/√2) + (1/√2)]} /{[(x/√2) + (1/√2)]² + 1} - ∫ {(x + 1)² /[(x + 1)²+ 2]²} dx +

    [1 /(x²+ 2x + 3)] =

    √2 arctan [(x/√2) + (1/√2)] - ∫ {(x + 1)² /[(x + 1)²+ 2]²} dx + [1 /(x²+ 2x +3)] =

    as for the remaining integral, rewrite it as:

    √2 arctan [(x/√2) + (1/√2)] - ∫ (x + 1) {(x + 1) /[(x + 1)²+ 2]²} dx + [1 /(x²+ 2x +3)] =

    and integrate it by parts, assuming:

    (x + 1) = u → dx = du

    {(x + 1) /[(x + 1)²+ 2]²} dx = dv →

    (divide and multiply by 2)

    (1/2){ 2(x + 1) dx /[(x + 1)²+ 2]²}  = dv →

    note that 2(x + 1) dx is the same as d[(x + 1)²+ 2], thus

    (1/2){ d[(x + 1)²+ 2] /[(x + 1)²+ 2]²}  = dv →

    (1/2) {[(x + 1)²+ 2]^(-2) d[(x + 1)²+ 2]} = dv →

    (1/2) {[(x + 1)²+ 2]^(-2+1)} /(-2+1) = v →

    (1/2) {[(x + 1)²+ 2]^(-1)} /(-1) = v →

    (-1/2) {1/ [(x + 1)²+ 2]} = v

    then, integrating the remaining integral by parts, you get:

    √2 arctan [(x/√2) + (1/√2)] - ∫ (x + 1) {(x + 1) /[(x + 1)²+ 2]²} dx + [1 /(x²+ 2x +3)] =

    √2 arctan [(x/√2) + (1/√2)] - { (-1/2) {1/ [(x + 1)²+ 2]} (x + 1) -

    ∫ (-1/2) {1/ [(x + 1)²+ 2]} dx} + [1 /(x²+ 2x +3)] =

    √2 arctan [(x/√2) + (1/√2)] - { (-1/2) {(x + 1) / [(x + 1)²+ 2]} +

    (1/2) ∫ {1/ [(x + 1)²+ 2]} dx} + [1 /(x²+ 2x +3)] =

    √2 arctan [(x/√2) + (1/√2)] + (1/2) {(x + 1) / [(x + 1)²+ 2]} -

    (1/2) ∫ {1/ [(x + 1)²+ 2]} dx + [1 /(x²+ 2x +3)] =

    similarly, factor out 2 from the denominator of the remaining integral:

    √2 arctan [(x/√2) + (1/√2)] + (1/2) {(x + 1) / [(x + 1)²+ 2]} -

    (1/2) ∫ dx / {2 [(1/2)(x + 1)²+ 1]} + [1 /(x²+ 2x +3)] =

    then include (1/2) in the square as (1√2):

    √2 arctan [(x/√2) + (1/√2)] + (1/2) {(x + 1) / [(x + 1)²+ 2]} -

    (1/2)(1/2) ∫ dx / {[(1/√2)(x + 1)]²+ 1} + [1 /(x²+ 2x +3)] =

    multiply and divide the remaining integral by √2:

    √2 arctan [(x/√2) + (1/√2)] + (1/2) {(x + 1) / [(x + 1)²+ 2]} -

    (1/4)√2 ∫ (1/√2)dx / {[(1/√2)(x + 1)]²+ 1} + [1 /(x²+ 2x +3)] =

    √2 arctan [(x/√2) + (1/√2)] + (1/2) {(x + 1) / [(x + 1)²+ 2]} -

    (√2/4) ∫ {d[(1/√2)(x + 1)]} / {[(1/√2)(x + 1)]²+ 1} + [1 /(x²+ 2x +3)] =

    √2 arctan [(x/√2) + (1/√2)] + (1/2) {(x + 1) / [(x + 1)²+ 2]} -

    (√2/4) arctan[(1/√2)(x + 1)] + [1 /(x²+ 2x +3)] + C =

    expanding arctan argument:

    √2 arctan [(x/√2) + (1/√2)] + (1/2) {(x + 1) / [(x + 1)²+ 2]} -

    (√2/4) arctan [(x/√2) + (1/√2)] + [1 /(x²+ 2x +3)] + C =

    [(4√2 -√2)/4] arctan [(x/√2) + (1/√2)] + (1/2){(x +1) /[(x +1)²+ 2]} + [1/(x²+ 2x +3)] + C =

    (3/4)√2 arctan [(x/√2) + (1/√2)] + (1/2) {(x +1) / [(x²+ 2x+1) + 2]} + [1/(x²+ 2x +3)] + C =

    (3/4)√2 arctan [(x/√2) + (1/√2)] + (1/2) [(x + 1) /(x² + 2x + 3)] + [1 /(x²+ 2x +3)] + C =

    (3/4)√2 arctan [(x/√2) + (1/√2)] + [(1/2)(x + 1) + 1] /(x² + 2x + 3) + C =

    (3/4)√2 arctan [(x/√2) + (1/√2)] + [(1/2)x + (1/2) + 1] /(x² + 2x + 3) + C =

    (3/4)√2 arctan [(x/√2) + (1/√2)] + [(1/2)x + (3/2)] /(x² + 2x + 3) + C =

    (3/4)√2 arctan [(x/√2) + (1/√2)] + (1/2)[(x + 3) /(x² + 2x + 3)] + C

    thus, in conclusion:

    ∫ [(x²+3)/(x²+2x+3)²] dx = (3/4)√2 arctan[(x/√2) +(1/√2)] + (1/2)[(x+3)/(x²+2x+3)] + C

    very tough.....but interesting....

    I hope it helps....

    Bye!

Question Stats

Latest activity: earlier.
This question has 1 answers.

BECOME A GUIDE

Share your knowledge and help people by answering questions.
Unanswered Questions