Question:

Find limit of x as x aproaches 0 of f(x)=x/[(radical 1+3x)-1]?

by Guest55843  |  earlier

0 LIKES UnLike

Find limit of x as x aproaches 0 of f(x)=x/[(radical 1+3x)-1]?

 Tags:

   Report

1 ANSWERS


  1. lim x / [√(1 + 3x) - 1] = (0/0)

    x → 0  

    multiply f(x) by [√(1 + 3x) + 1]/[√(1 + 3x) + 1] (= 1):

    lim {x / [√(1 + 3x) - 1]} {[√(1 + 3x) + 1]/[√(1 + 3x) + 1]} =

    x → 0

    lim {x [√(1 + 3x) + 1]} / {[√(1 + 3x) - 1][√(1 + 3x) + 1]} =

    x → 0

    expand the denominator into:

    lim {x [√(1 + 3x) + 1]} / {[√(1 + 3x)]² - 1} =

    x → 0

    lim {x [√(1 + 3x) + 1]} / (1 + 3x - 1) =

    x → 0

    lim {x [√(1 + 3x) + 1]} / 3x =

    x → 0

    cancel x, yielding:

    lim [√(1 + 3x) + 1] / 3 =

    x → 0

    lim (√1 + 1) / 3 =  2/3

    x → 0

    I hope it helps...

    Bye!

Question Stats

Latest activity: earlier.
This question has 1 answers.

BECOME A GUIDE

Share your knowledge and help people by answering questions.