Question:

Finding Possible Solutions Part 2?

by  |  earlier

0 LIKES UnLike

1. x^4 - 5x^3 + 5x^2 + 5x = 6

2. 2x^3 - 5x^2 - 6x + 4 = 0

3. 2^3x = 1/256

4. x - 1/2 - 3x - 4/6 = 1/3

5. 6x - 1 = 15/x

6. absolute value x^2 - 5 = 4

Thanks...

 Tags:

   Report

1 ANSWERS


  1. 1.x^4 - 5x^3 + 5x^2 + 5x = 6

    <=> x^4 - (5x^3 + 5x) + 5x^2 - 5 - 1=0

    <=> (x^4-1) -5x(x^2-1) + 5(x^2-1)=0

    <=> (x^2-1)(x^2+1) -5x(x^2-1) +5(x^2-1)=0

    <=>(x^2-1)( x^2+1 -5x +5)=0

    <=>(x-1)(x+1)(x^2-5x+6)=0

    <=>x=1 or x=-1 or x=3 or x=2

    2. (no idea! )

    3.2^3x = 1/256

    <=>2^(3x)=1/(2^8)

    <=>2^8 * 3^(3x)=1

    <=>8+3x=0

    <=>x=-8/3

    4. x - 1/2 - 3x - 4/6 = 1/3

    <=> -2x-3/2=0

    <=>-2x=3/2

    <=>x=-3/4

    5.  6x - 1 = 15/x    (x<>0)

    <=> 6x^2-x-15=0 (x<>0)

    <=> x=-3/2 or x=5/3

    6. |x^2 - 5| = 4

    <=> x^2-5=4 where x>=2 or x<= -2 (1)

    and 5-x^2=4 where -2<x<2     (2)

    ^2

    (1) <=>x=9 <=>x=3 or x=-3

    (2) <=> x^2=1 <=> x=1 or x=-1

    So, the equation has four roots: x=3 or x=-3 or x=1 or x=-1

Question Stats

Latest activity: earlier.
This question has 1 answers.

BECOME A GUIDE

Share your knowledge and help people by answering questions.
Unanswered Questions