Question:

Given the function f(x)=-3x^4 + 8x^3 + 36x^2?

by  |  earlier

0 LIKES UnLike

..i). find the stationary points of the function

..ii). find the range of values of x for which the function is increasing

..iii). state which stationary points are maxima and minima

 Tags:

   Report

1 ANSWERS


  1. f(x) = -3x⁴+8x³+36x²

    f'(x) = -12x³+24x²+72x

    f'(x) = 0 -> Find stationary points

    -12x³+24x²+72x = 0

    x³-2x²-6x = 0

    x(x²-2x-6) = 0

    x=0

    x²-2x-6=0

    x=0

    x = 2+/-rad(28)/2 = 2+/-2rad7 /2 = 1+/-rad7

    x₁ = 0

    x₂ = 1+√7

    x₃ = 1-√7

    For x=0 f(x) = -3*0+8*0+36*0 = 0

    O(0;0)

    For x=1+√7 f(x) = 56√7+188

    A(1+√7; 56√7+188)

    For x=1-√7 f(x) = 188-56√7

    B(1-√7 ; 188-56√7)

    O(0;0)

    A(1+√7 ; 56√7 + 188)

    B(1-√7 ; 188-56√7)

    For knowing if we have maxima or minima points you must find f''(x)

    f''(x) = -36x²+48x+72

    Substitute

    x = 0

    f''(0) = 72

    For x=0

    f'(x) = 0 , f''(x) > 0

    In O(0;0) we have a minima point

    Substitute

    x = 1+√7

    f''(1+√7) = -24√7-168

    For x=1+√7

    f'(x) = 0 , f''(x) < 0

    In A(1+√7 ; 56√7+188) we have a maxima point

    Substitute

    x = 1-√7

    f''(1-√7) = 24√7-168

    For x=1-√7

    f'(x) = 0 , f''(x) < 0

    In B(1-√7 ; 188-56√7) we have a maxima point

    Then

    O(0;0) -> minima point

    A(1+√7; 56√7+188) maxima point

    B(1-√7 ; 188-56√7) maxima point

    f'(x) = -12x³+24x²+72x

    f'(x) > 0

    -12x³+24x²+72x

    -12x(x²-2x-6) > 0

    -12x>0 , x²-2x-6 > 0

    x<0 , x<1-√7 v x>1+√7

    x<1-√7

    -12x<0 , x²-2x-6 <0

    x>0 , 1-√7 < x < 1+√7

    0<x<1+√7

    Then for

    x<1-√7 v 0<x<1+√7

    The function is increasing

    Answers

    i) , ii)

    O(0;0) -> minima point

    A(1+√7; 56√7+188)-> maxima point

    B(1-√7 ; 188-56√7)-> maxima point

    iii)

    for

    x<1-√7 v 0<x<1+√7

    The function is increasing

Question Stats

Latest activity: earlier.
This question has 1 answers.

BECOME A GUIDE

Share your knowledge and help people by answering questions.