Question:

Help me find the vertex of the parabola please.?

by  |  earlier

0 LIKES UnLike

g(x) = x2 - 9x + 2

 Tags:

   Report

4 ANSWERS


  1. Without calculus:

    The vertex falls between the roots.

    x1 = 8.772

    x2 = 0.228

    (I just plugged that into a quadratic solver)

    Find the x value that is halfway between (x1 + x2)/2

    = 4.5

    so the vertex is at (4.5, y)  

    Solve for y by plugging it back into the original equation

    (4.5)^2 - 9(4.5) + 2 = -18.25]

    so the vertex is at ( 4.5, -18.25)

    Using calculus:

    d/dx g(x) = 2x - 9.

    2x-9 = 0, x = 4.5.

    And proceed as above to find the y-coordinate

    (Properly I should take the second derivative and check to make sure it's not an inflection point, but It's a parabola, so why bother)


  2. Nice g-string.

  3. the x coordinate of a parabola's vertex is -b/2a.

    so a =1, b=-9 and c=2

    -b/2a = -(-9)/2(1) = 9/2

    plug that in for x in the equation:

    g(9/2) = (9/2)² - 9(9/2) +2

    g(9/2) = (81/4) - (81/2) +2

    g(9/2) = (81/4) - (162/4) + (8/4)

    g(9/2) = -73/4 = -18.25

    vertex = (9/2 , -73/4) or (4.5, -18.25)

  4. parabola... y = ax^2 + bx + c

    The vertex x-value is x = -b/(2a) = -(-9)/(2*1) = 9/2

    y = (9/2)^2 - 9(9/2) + 2 = -73/4

    The vertex point is (9/2, -73/4)

    Take care,

    David

Question Stats

Latest activity: earlier.
This question has 4 answers.

BECOME A GUIDE

Share your knowledge and help people by answering questions.