Question:

Help with trig identities?

by  |  earlier

0 LIKES UnLike

i cant figure these two questions out :(

1) Express the following in terms of sin0 and/or cos0 (the 0 being beta)

1+cot^2beta/cot^2beta

2) Prove that tan^2beta/sin^2beta = 1+tan^2beta , then check the identity using beta=120 degrees

Thanks for all your help :)

 Tags:

   Report

2 ANSWERS


  1. 1. Uh, seems pretty straightforward.

    cot^2(beta)/cot^2(beta) = 1

    1 + 1 = 2

    So the answer is 2.

    2.

    tan^2(beta) = sin^2(beta)/cos^2(beta)

    tan^2(beta)/sin^2(beta) = [sin^2(beta)/cos^2(beta)] / sin^2(beta)

    tan^2(beta)/sin^2(beta) = 1/cos^2(beta)

    But 1 = sin^2(beta) + cos^2(beta)

    tan^2(beta)/sin^2(beta) = [sin^2(beta) + cos^2(beta)]/cos^2(beta)

    tan^2(beta)/sin^2(beta) = 1 + tan^2(beta)

    Use beta = 120 degrees

    tan(beta) = SQRT(3) ......... tan^2(beta) = 3

    sin(beta) = SQRT(3)/2 ...... sec^2(beta) = 3/4

    tan^2(beta)/sin^2(beta) = 3/(3/4) = 4

    1 + tan^2(beta) = 1 + 3 = 4

    and 4 = 4 so it checks


  2. 1+cot^2beta=csc^2beta

    1+cot^2beta/cot^2beta= csc^2beta / cot^2beta

    =(1/sin^2beta)(sin^2beta / cos^2beta)

    =1 / cos^2beta

    2)tan^2beta/sin^2beta= (sin^2beta / cos^2beta)(1/sin^2beta)

    =1/cos^2beta = sec^2beta = 1+tan^2beta

    beta = 120 degrees

    tan(120)=sqrt(3)

    sin(120)=sqrt(3)/2

    tan^2(120)/sin^2(120) = 3 / (3/4)=4 left side

    1+tan^2(120) = 1+ sqrt(3)*sqrt(3) = 1+3 = 4 right side

Question Stats

Latest activity: earlier.
This question has 2 answers.

BECOME A GUIDE

Share your knowledge and help people by answering questions.
Unanswered Questions