Question:

How do I simplyfy (Sin(x/2))^2 and then derivate the answer?

by  |  earlier

0 LIKES UnLike

So my question is how do i solve f(x) = (sin(x/2))^2 dx

Thank you very much, I have a math exam in two weeks, and I'm trying to do a earlier exam.

 Tags:

   Report

2 ANSWERS


  1. f(x) = x^2

    g(x) = sin (x/2)

    f(g(x)) = (sin(x/2))^2 <- your problem, and you're asked to find (f(g(x)))'

    Use the chain rule:  (f(g(x)))' = f'(g(x))g'(x)

    f'(x) = 2x; g'(x) = :using the chain rule again: .5cos(x/2)

    plugging into the equation; answer:

    2(sin(x/2)) * .5cos(x/2) = final answer -> sin(x/2)*cos(x/2) <- final answer


  2. You have set this up like you want the integral, but have asked for the derivative

    ∫sin²(x/2) dx

    = ½ ∫1 - cos(x) dx

    = ½ (x - sin(x)) + C

    I just used the identity:

    sin²(x) = ½ (1 - cos(2x))

Question Stats

Latest activity: earlier.
This question has 2 answers.

BECOME A GUIDE

Share your knowledge and help people by answering questions.
Unanswered Questions