Question:

How much torque does a formula one car have?

by  |  earlier

0 LIKES UnLike

How much torque does a formula one car have?

 Tags:

   Report

2 ANSWERS


  1. Since its inception in 1947, Formula One has used a variety of engine regulations. The origin of the name Formula comes from the use of a maximum engine capacity and single weight regulation. "Formulas" limiting engine capacity had been used in Grand Prix racing on a regular basis since after World War I. The engine formulae are divided according to era.

    The power a Formula One engine produces is generated by operating at a very high rotational speed, up to 20,000 revolutions per minute (RPM). This contrasts with road car engines of a similar size which operate safely at typically less than 7,000 rpm. However, the torque (turning force at a given speed) of a Formula One engine is not much higher than a conventional petrol engine. For example, the 2006 2.4 litre Toyota RVX-06 V8 engine produces 552 kW (740 bhp, 751 PS) at 19,000 rpm and outputs 274 N·m (202 ft·lbf) of torque giving the engine a 14.3 bar (1.43 MPa) mean effective pressure. This is comparable with the 14.3 bar maximum MEP of the 2003 BMW E46 M3 CSL, the best production car in this respect.

    Consequently, high power is obtained by making an engine turn faster, a goal sought ever since research into performance engines began. The basic configuration of a naturally-aspirated Formula One engine has not been greatly modified since the 1967 Cosworth DFV and the mean effective pressure has stayed at around 14 bar MEP.[1] Until the mid-1980s Formula One engines were limited to around 12,000 rpm due to the traditional metal valve springs used inside the engine to close the valves. The speed required to operate the engine valves at a higher RPM is much greater than the metal valve springs can handle and they were replaced by pneumatic valve springs introduced by Renault. Since the 1990s all Formula One engine manufacturers now use pneumatic valve springs with the pressurised air allowing engines to reach speeds nearly 20,000 rpm.

    The bore is the diameter of the cylinder hole in the engine block for the piston and the stroke is the distance the piston travels in one revolution. A shorter stroke enables the engine to produce a higher rotating speed at a constant mean piston speed but also increases the speed at which the piston must travel in each revolution. Shortening the stroke however requires enlarging the bore to produce a Formula One engines 2.4 litre displacement resulting in a less efficient combustion chamber. The stroke of a Formula One engine is approximately 40 mm (1.6 in), less than half as long as the bore is wide (98 mm) producing an "over-square" configuration.

    A 2.4 litre Formula One engine at 19,000 rpm has a 25 m/s mean piston speed (40 mm×2×19000 rpm/60), the same value as the previously mentioned Honda S2000 engine (84 mm×2×8900 rpm/60). This value is typically limited by increasing intake port velocities and frictional losses, but is attained by commercial vehicle engines, like the Honda S2000, BMW E46 M3's S54B32 with 24.5 m/s as far back as 2001, the Audi RS4 with 24.2 m/s or the Yamaha YZF-R6 motorcycle with 23 m/s.

    While there is currently an engine freeze that effectively bans constructors from developing new engines until 2013, there is much speculation on the engine regulations once the freeze is lifted. The FIA and FOM have made statements indicating that both want F1 to be more environmentally friendly and at the same time, be on the front line of future engine development. There is also speculation of a return to turbocharged engines based on comments made by the FIA on finding ways to effectively harness waste heat energy from the cars exhausts.

    The FIA could introduce 2.2 litre turbocharged V6 engines running on biodiesel in 2011, restricted to 10,000 rpm and capable of enduring five Grand Prix, to attract generalist automakers with resembling products. This could come along the introduction of traction control, four-wheel drive, power boost devices and identical bodywork to save on aerodynamic competition lacking real-life applications.

    A Formula One engines high RPM output has been made possible mainly due to advances in metallurgy and design allowing lighter pistons and connecting rods to withstand the accelerations necessary to attain such high speeds. At each revolution, the piston goes from a null speed to almost two times the mean speed (approx. 40 m/s) then back to zero, and then another similar cycle to terminate the circle. Maximum piston acceleration occur at TDC and is in the area of 95,000 m/s², about 10,000 times standard gravity.


  2. Hey,

    Here is what I found from http://en.wikipedia.org/wiki/Formula_One...

    "The power a Formula One engine produces is generated by operating at a very high rotational speed, up to 20,000 revolutions per minute (RPM). This contrasts with road car engines of a similar size which operate safely at typically less than 7,000 rpm. However, the torque (turning force at a given speed) of a Formula One engine is not much higher than a conventional petrol engine. For example, the 2006 2.4 litre Toyota RVX-06 V8 engine produces 552 kW (740 bhp, 751 PS) at 19,000 rpm and outputs 274 N·m (202 ft·lbf) of torque giving the engine a 14.3 bar (1.43 MPa) mean effective pressure. This is comparable with the 14.3 bar maximum MEP of the 2003 BMW E46 M3 CSL, the best production car in this respect."

Question Stats

Latest activity: earlier.
This question has 2 answers.

BECOME A GUIDE

Share your knowledge and help people by answering questions.
Unanswered Questions