Question:

How were understood the black holes?

by  |  earlier

0 LIKES UnLike

How were understood the black holes?

 Tags:

   Report

5 ANSWERS


  1. A black hole is a theoretical entity.

      As the diameter of a two solar mass sphere lessens the surface gravity increases,at a diameter of about 3 km the surface gravity is such that the surface escape velocity is greater than the speed of light,light could not escape so it would be invisible.

      A black hole would act like any other 2 solar mass celestial body so it would affect other things around it like the sun affects our solar system.

      The are a few good reasons why a black hole is a non viable entity.


  2. We know thay are there because of their relationship to stars that suround them, in the centre of all galaxies are super massive black holes with many stars orbiting them eventualy in our galaxy it will start feed upon those stars and the fireworks will really start.

    ps. look up quasars&blazars on wikipedia.

  3. any region, where density approaches infinity. i.e. mass approaches infinity and/or volume approaches zero. it doesn't have to be in space and it doesn't have to be a huge massive object.

  4. The theories surrounding black holes were developed based on our understanding of more tangible physics -- gravity, time, etc.  Since gravity is something we're able to study up-close, and gravity is the fundamental force driving a black hole, we are able to make calculations and draw conclusions about how they work.

  5. A black hole is a region of space in which the gravitational field is so powerful that nothing, not even light, can escape its pull after having fallen past its event horizon. The term "Black Hole" comes from the fact that, at a certain point, even electromagnetic radiation (e.g. visible light) is unable to break away from the attraction of these massive objects. This renders the hole's interior invisible or, rather, black like the appearance of space itself.

    Despite its interior being invisible, a black hole may reveal its presence through an interaction with matter that lies in orbit outside its event horizon. For example, a black hole may be perceived by tracking the movement of a group of stars that orbit its center. Alternatively, one may observe gas (from a nearby star, for instance) that has been drawn into the black hole. The gas spirals inward, heating up to very high temperatures and emitting large amounts of radiation that can be detected from earthbound and earth-orbiting telescopes. Such observations have resulted in the general scientific consensus that—barring a breakdown in our understanding of nature—black holes do exist in our universe.

    The idea of an object with gravity strong enough to prevent light from escaping was proposed in 1783 by the Reverend John Michell, an amateur British astronomer. In 1795, Pierre-Simon Laplace, a French physicist independently came to the same conclusion. Black holes, as currently understood, are described by Einstein's general theory of relativity, which he developed in 1916. This theory predicts that when a large enough amount of mass is present in a sufficiently small region of space, all paths through space are warped inwards towards the center of the volume, preventing all matter and radiation within it from escaping.

    While general relativity describes a black hole as a region of empty space with a pointlike singularity at the center and an event horizon at the outer edge, the description changes when the effects of quantum mechanics are taken into account. Research on this subject indicates that, rather than holding captured matter forever, black holes may slowly leak a form of thermal energy called Hawking radiation. However, the final, correct description of black holes, requiring a theory of quantum gravity, is unknown.

    In 1915, Albert Einstein developed the theory of gravity called general relativity, having earlier shown that gravity does influence light (although light has zero rest mass, it is not the rest mass that is the source of gravity but the energy). A few months later, Karl Schwarzschild gave the solution for the gravitational field of a point mass and a spherical mass, showing that a black hole could theoretically exist. The Schwarzschild radius is now known to be the radius of the event horizon of a non-rotating black hole, but this was not well understood at that time, for example Schwarzschild himself thought it was not physical. Johannes Droste, a student of Lorentz, independently gave the same solution for the point mass a few months after Schwarzschild and wrote more extensively about its properties.

    In 1930, the astrophysicist Subrahmanyan Chandrasekhar argued that, according to special relativity, a non-rotating body above 1.44 solar masses (the Chandrasekhar limit), would collapse since there was nothing known at that time could stop it from doing so. His arguments were opposed by Arthur Eddington, who believed that something would inevitably stop the collapse. Eddington was partly right: a white dwarf slightly more massive than the Chandrasekhar limit will collapse into a neutron star. But in 1939, Robert Oppenheimer published papers (with various co-authors) which predicted that stars above about three solar masses (the Tolman-Oppenheimer-Volkoff limit) would collapse into black holes for the reasons presented by Chandrasekhar.

    Oppenheimer and his co-authors used Schwarzschild's system of coordinates (the only coordinates available in 1939), which produced mathematical singularities at the Schwarzschild radius, in other words the equations broke down at the Schwarzschild radius because some of the terms were infinite. This was interpreted as indicating that the Schwarzschild radius was the boundary of a "bubble" in which time "stopped". For a few years the collapsed stars were known as "frozen stars" because the calculations indicated that an outside observer would see the surface of the star frozen in time at the instant where its collapse takes it inside the Schwarzschild radius. But many physicists could not accept the idea of time standing still inside the Schwarzschild radius, and there was little interest in the subject for over 20 years.

    In 1958 David Finkelstein broke the deadlock over "stopped time" and introduced the concept of the event horizon by presenting the Eddington-Finkelstein coordinates, which enabled him to show that "The Schwarzschild surface r = 2 m is not a singularity but acts as a perfect unidirectional membrane: causal influences can cross it but only in one direction". Note that at this stage all theories, including Finkelstein's, covered only non-rotating, uncharged black holes.

    In 1963 Roy Kerr extended Finkelstein's analysis by presenting the Kerr metric (coordinates) and showing how this made it possible to predict the properties of rotating black holes. In addition to its theoretical interest, Kerr's work made black holes more believable for astronomers, since black holes are formed from stars and all known stars rotate.

    In 1967 astronomers discovered pulsars, and within a few years could show that the known pulsars were rapidly rotating neutron stars. Until that time, neutron stars were also regarded as just theoretical curiosities. So the discovery of pulsars awakened interest in all types of ultra-dense objects that might be formed by gravitational collapse.

    In 1970, Stephen Hawking and Roger Penrose proved that black holes are a feature of all solutions to Einstein's equations of gravity, not just of Schwarzschild's, and therefore black holes cannot be avoided in some collapsing objects.

    In 1971, Louise Webster and Paul Murdin, at the Royal Greenwich Observatory, and Charles Thomas Bolton, working independently at the University of Toronto's David Dunlap Observatory, observed HDE 226868 wobble, as if orbiting around an invisible but massive companion. Further analysis led to the declaration that the companion, Cygnus X-1, was in fact a black hole.

Question Stats

Latest activity: earlier.
This question has 5 answers.

BECOME A GUIDE

Share your knowledge and help people by answering questions.
Unanswered Questions