Question:

How would i work this out? (125/8)^n = 25/4 NON CALCULATOR PLEASE. thanks x ?

by  |  earlier

0 LIKES UnLike

How would i work this out? (125/8)^n = 25/4 NON CALCULATOR PLEASE. thanks x ?

 Tags:

   Report

2 ANSWERS


  1. take the ln

    n ln(125/8) = ln(25/4)

    n ln[(5/2)^3] = ln[(5/2)^2]

    3n ln[5/2] = 2ln[5/2]

    3n = 2

    n = 2/3

    check.

    (125/8)^(2/3)

    cube root of 125 = 5 and 5^2 = 25

    cube root of 8 = 2 and 2^2 = 4

    (125/8)^(2/3) = 25/4 which is the original equation


  2. The first thing I notice is that 125 and 25 have the same base as does 8 and 4

    125 = 5^3 and 25 = 5^2

    8 = 2^3 and 4 = 2^2

    (5^3/2^3)^n = (5^2/2^2)

    distribute the n

    (5^3n)/(2^3n) = (5^2/2^2)

    set the bases equal to each other

    5^3n= 5^2

    2^3n = 2^2

    so 3n = 2

    n = 2/3

Question Stats

Latest activity: earlier.
This question has 2 answers.

BECOME A GUIDE

Share your knowledge and help people by answering questions.