Question:

I would like to know the actually purpose of the LHC (Large Hadron Collider)

by  |  earlier

0 LIKES UnLike

some say its life threatening, others say it isnt. my opinion is: its either gona do what its suppose to and recreate the conditions of the big bang( thus surely creataing a big bang?) or if its goes **** up its will make matter that is to much for earth and corse a balck whole and we'll all be ******! also, if its going to recreate the big bang conditions but not the bang can somebody explain how this is going to happen? i dont want just any randomer answering these questions, i want somebody with diplomas, degrees and phd's comming out of thier **** please! thanks.

 Tags:

   Report

4 ANSWERS


  1. Purpose of LHC is to smash particles together.  The purpose of the detectors around LHC is to collect data about the collisions.   ONce these high energy particles are collided there will be huge (relative to its volume) amount of energy will be created.  Now its time for Einstein's good ol E =mc^2 to be put to work.  The Energy created will turn into matter, yes it really happens.  You won't create a grand piano or something, but you will see particles appear that will quickly decay.  The more energy you put into the collision the more exotic particles we will see.  One of the several main goals of the LHC is to provide insight into particles and phenomenon that has never been observed, but are believe to have happened billions of years ago.  


  2. the aim is to have an accelerator powerful enough to smash beams of particles together with the energy that they would have had at the time the big bang went off. this is done to create new particles out of the collisions, hopefully ones that have never been seen before, which will hopefully increase our understanding of the universe. there is not going to be a black hole that could threaten us, we have done these experiments before and the world is still here.

  3. to seek knowledge

    particle accelerators have been around a hundred years so everyone can stop crying

  4. The LHC is intended to look for the Higg's boson and physics beyond the standard model of particle physics such as super symmetry and dark matter/energy candidates. The standard model does not predict that the LHC will produce mini-Black Holes; however, if physics beyond the standard model is found to hold, then mini-Black Holes might be possible. These mini-Black holes might be produced at a rate in the order of one per second. According to the some calculations, these ‘holes’ are harmless because they will quickly decay via ‘Hawking radiation’ and explode into a shower of particles. The problem with ‘Hawking radiation’ is that it too is unproven physics and, thus, might not be a correct explanation for the disappearance of mini-Black Holes. An unlikely, accumulation of mini-Black Holes could be a ‘small’ problem.

    Below I will detail some of the physics that the LHC is attempting to explore.

    The weak interaction is mediated by spin-1 bosons which act as force carriers between quarks and/or leptons. There are three of these intermediate vector bosons, which were all discovered at CERN in 1983. They are the charged bosons W+ and W- and the neutral Z0. Their masses are measured to be: -

    M(W) = 80.3 Gev/c² and M(Z) = 91.2 Gev/c²

    which gives their ranges as: -

    R(W) ≈ R(Z) ≈ 2 x 10^-3 fm

    Their decay modes are as follows: -

    W+ -> l+ + vl

    W- -> l- + vl'

    Z0 -> l+ + l-

    Where the l's stand for leptons and the v's for neutrinos with the prime ' indicating an anti-neutrino.

    This introduction sets the scene for what follows!

    The intermediate vector bosons gain their mass from the Higgs boson. Please allow me to explain.

    During the nineteen-sixties the theoretical physicists Glashow, Salam and Weinberg developed a theory which unified the electromagnetic and the weak nuclear forces. This theory is known as the ‘electroweak’ theory, it predicted the neutral vector boson Z0, and weak nuclear force reactions arising from its exchange, in what are known as neutral current reactions. The theory also accounted for the heavy charged bosons W+ and W-, required for the mediation of all observed weak interactions, known as charged current reactions. These particles were discovered in 1983.This unified theory is a ‘gauge invariance’ theory, which means that if the components of its underlying equations are transformed, in position or potential, they still predict exactly the same physics. Because the force carrying particles (Z0, W+ and W-), of this theory, are massive spin-1 bosons a spin-0 boson is required to complete the theory. This spin-0 boson is the as yet unobserved ‘Higgs’ boson.

    The masses of the force carrying bosons (Z0, W+ and W-), for the electroweak theory, are derived from their interaction with the scalar Higgs field. Unlike other physical fields, the Higgs field has a non-zero value in the vacuum state, labelled φ0, and furthermore this value is not invariant under gauge transformation. Hence, this gauge invariance is referred to as a ‘hidden’ or ‘spontaneously broken’ symmetry. The Higgs field has three main consequences’. The first, is that the electroweak force carrying bosons (Z0, W+ and W-) can acquire mass in the ratio: -

    M(W) =cosθ(W)

    _____

    M(Z)

    Where θ(W) Is the electroweak mixing angle. These masses arise from the interactions of the gauge fields with the non-zero vacuum expectation value of the Higgs field. Secondly, there are electrically neutral quanta H0, called Higgs bosons, associated with the Higgs field, just as photons are associated with the electromagnetic field. Thirdly, the Higgs field throws light on the origin of the quark and lepton masses. In the absence of the Higgs field the requirements of gauge invariance on the masses of spin-½ fermions (quarks and leptons etc,) would set them at zero for parity violating interactions (non-mirror image interactions). Parity is a conserved quantity in strong nuclear force and electromagnetic interactions but is violated in weak nuclear force interactions, which would make quark and lepton masses zero in this later case. However, interactions with the Higgs field can generate fermion masses due to the non-zero expectation value φ0 of this field, as well as with interactions with the Higgs bosons. These interactions have a dimensionless coupling constant g(Hff) related to the fermions mass m(f) by the expression: -

    g(Hff) = √ (√2G(f)m(f) ²)

    Where G(f) is the Fermi coupling constant and f is any quark or lepton flavour. However, this theory, that the fermion masses are mediated by their interaction with the Higgs field, does not predict their mass m(f). However, with the future discovery of the Higgs boson the above equation can be used to confirm the observed coupling constant g(Hff).

    At CERN, the Large Hadron Collider (LHC) will search for the Higgs boson at an energy of up to 1 TeV by colliding protons in the reaction: -

    p + p -> H0 + X

    Where X is any state allowed by the usual conservation laws.

      

Question Stats

Latest activity: earlier.
This question has 4 answers.

BECOME A GUIDE

Share your knowledge and help people by answering questions.