Question:

Integrate dx/(x³ - a³)?

by  |  earlier

0 LIKES UnLike

∫(1/x³ - a³)dx = ?

 Tags:

   Report

4 ANSWERS


  1. I am not sure,

    but, let me give a try!

    ∫(1/x³ - a³)dx =  (1/(3x^2)) x log(x^3 - a^3)

    (or)

    ∫(1/x³ - a³)dx =  log(x^3 - a^3) / (3x^2))

    Both answers here are same Only!


  2. Hello

    write  (x³-a³)=(x-a)(x²+ax+a²)

    Then find A,B and C such that

    1/(x³-a³) = A/(x-a) + (Bx+C)/(x²+ax+a²)

    Integration is immediate as you can see after Gravitate's work;-)

  3. no thanks, it is totally horrible


  4. Notice that it is the difference of two cubes and factor it using:

    a³ - b³ = ( a - b )·( a² + a·b + b² )

    ————

    ∫1/(x³ - a³) dx

    = ∫1/[ ( x - a )·( x² + a·x + a² ) ] dx

    ————

    Use partial fractions:

    1/[ ( x - a )·( x² + a·x + a² ) ] = A/( x - a ) + B/( x² + a·x + a² )

    1 = A·( x² + a·x + a² ) + B·( x - a )

    Choose a convenient value for x to cancel either A or B. Choose x=a:

    1 = A·( (a)² + a·(a) + a² ) + B·( (a) - a )

    1 = A·( 3·a² )

    1/( 3·a² ) = A

    Use this value to solve for B:

    1 = 1/( 3·a² ) · ( x² + a·x + a² ) + B·( x - a )

    -B·( x - a ) = 1/( 3·a² ) · ( x² + a·x + a² ) - 1

    -B·3·a²·( x - a ) = x² + a·x - 2·a²

    -B·3·a²·( x - a ) = ( x - a )·( x + 2·a )

    B = -( x + 2·a ) / ( 3·a² )

    ————

    ∫ [ A/( x - a ) + B/( x² + a·x + a² ) ] dx

    → ∫ [ 1/( 3·a² ) /( x - a ) - ( x + 2·a ) / ( 3·a² ) / ( x² + a·x + a² ) ] dx

    = 1/( 3·a² )·∫1/( x - a )dx - 1/( 3·a² )·∫( x + 2·a )/( x² + a·x + a² )dx

    This are two integrals now.

    (I'll leave out the factored-out constants while evaluating.)

    ————

    Integral one:

    ∫1/( x - a ) dx

    Let u = x - a

    Then du = dx

    → ∫1/u du

    = ln|u| + C,

    ————

    Integral two:

    ∫( x + 2·a )/( x² + a·x + a² )]dx

    = ½·∫( 2·x + a + 3·a )/( x² + a·x + a² )]dx

    = ½·∫( 2·x + a )/( x² + a·x + a² )]dx + ½·∫( 3·a )/( x² + a·x + a² )]dx

    Let v = x² + a·x + a²

    Then dv = (2·x + a)dx

    → ½·∫dv/v + ½·∫( 3·a )/( x² + a·x + a² )]dx

    = ½·ln| v | + 3·a/2·∫1/( x² + a·x + a² )]dx

    ————

    Last part is sadly the hardest.

    You want to make a trigonometric substitution.

    Complete the square in the denominator:

    ∫1/( x² + a·x + a² ) dx

    = ∫1/( (x² + a·x + (a/2)² - (a/2)² + a² ) dx

    = ∫1/[(x + a/2)² + 3·a²/4 ] dx

    Let q = x + a/2

    Then dq = dx

    → ∫1/( q² + 3·a²/4 ) dq

    Get 3·a²/4 to be just 1. Multiply by 1/1:

    = [4/(3·a²)]/[ 4/(3·a²) ] · ∫1/( q² + 3·a²/4 ) dq

    = [ 4/(3·a²) ] · ∫1/{ [4/(3·a²)]·q² + 1 ] dq

    Bring the the coefficient of q² into the square by getting its square root:

    = [ 4/(3·a²) ] · ∫1/{ [2/(√(3)·a)·q]² + 1 ] dq

    Let tan(r) = 2/[√(3)·a]·q

    Then r = arctan[ 2/[√(3)·a]·q ]

    And dr = 1 / { [ 2/[√(3)·a]·q ]² + 1 } · 2/[√(3)·a] · dq

    And dq = { [ 2/[√(3)·a]·q ]² + 1 } · √(3)·a/2 · dr

    Replace dq and reduce:

    → [ 4/(3·a²) ] · ∫1/{ [2/(√(3))·a·q]² + 1 ]·{ [ 2/[√(3)·a]·q ]² + 1 } · √(3)·a/2·dr

    = [ 4/(3·a²) ] · ∫ √(3)·a/2 dr

    = 2/[ √(3)·a ] · r + C,,

    ————

    Put these integrals all back together with the left-out constants:

    1/( 3·a² )·∫1/( x - a )dx - 1/( 3·a² )·∫( x + 2·a )/( x² + a·x + a² )dx

    = 1/( 3·a² )·{ ln|u| } - 1/( 3·a² )·{ ½·ln| v | + 3·a/2·2/[ √(3)·a ]·r } + C

    Reverse the substitutions for u, v, and r (and then for q inside r):

    = 1/( 3·a² )·{ ln|x - a| } - 1/( 3·a² )·{ ½·ln|x² + a·x + a²| + 3·a/2·2/[ √(3)·a ]·arctan[ 2/[√(3)·a]·q ] } + C

    = 1/( 3·a² )·{ ln|x - a| } - 1/( 3·a² )·{ ½·ln|x² + a·x + a²| + 3·a/2·2/[ √(3)·a ]·arctan[ 2/[√(3)·a]·(x + a/2) ] } + C

    Simplify:

    = 1/(3·a²)·{  ln|x - a| - ½·ln|x² + a·x + a²| - √(3)·arctan[(2·x/a + 1)/√(3)] } + C

Question Stats

Latest activity: earlier.
This question has 4 answers.

BECOME A GUIDE

Share your knowledge and help people by answering questions.