Question:

Integration problem. College Calc II?

by Guest62492  |  earlier

0 LIKES UnLike

integral of e^(2x) * cosx dx. says to integrate by parts where you have a u and dv and substitute in. thanks!

 Tags:

   Report

2 ANSWERS


  1. Lol, i remember doing this problem too, but i kinda forgot some of my BC stuff.

    u= e^2x , du= 2e^2x

    v = sinx, dv = cosx

    INT{udv} = uv - INT{vdu}

    So u get this:

    - INT{e^2x*cosxdx} = e^2x * sinx - INT{sinx * 2e^2x}

    - So your gonna have to integrate INT{sinx * 2e^2x} by parts as well.

        - u= 2e^2x, du = 4e^2x

          v= - cosx, dv = sinx

         INT{sinx * 2e^2x} = 2e^2x * (-cosx) - INT{-cosx * 4e^2x}

    So u get this  

      INT{e^2x*cosxdx} = e^2x * sinx - 2e^2x * (-cosx) - INT{-cosx * 4e^2x}

    which =  

    INT{e^2x*cosxdx}=e^2x * sinx - 2e^2x * (-cosx) + 4 * INT{cosx * e^2x}

    Subtract the 4 * INT{cosx * e^2x} from the right side to the left and you get this:

        - 3* INT{e^2x*cosxdx} = e^2x * sinx - 2e^2x * (-cosx)



    - So then you divide by (-3) to both sides and you get:

          INT{e^2x*cosxdx} = [e^2x * sinx - 2e^2x * (-cosx) ] / -3

    Umm hopefully this is right, if not, well i tried, im somewhat sketchy in my math rite now. Good luck.  


  2. Integrate by parts twice.

    ∫e^(2x)cos(x) dx

    u=e^(2x) ; du = 2e^(2x) dx

    dv = cos(x)dx ; v = sin(x) + c

    ∫udv = uv - ∫vdu

    ∫e^(2x)cos(x) dx = sin(x)e^(2x) - 2∫e^(2x)sin(x)dx + c

    ∫e^(2x)sin(x)dx

    u=e^(2x) ; du = 2e^(2x) dx

    dv = sin(x)dx ; v = -cos(x) + c

    ∫e^(2x)sin(x)dx = -e^(2x)cos(x) + 2∫e^(2x)cos(x)dx + c

    ∫e^(2x)cos(x) dx = sin(x)e^(2x) - 2[-e^(2x)cos(x) + 2∫e^(2x)cos(x)dx] + c

    ∫e^(2x)cos(x) dx = sin(x)e^(2x) + 2e^(2x)cos(x) - 4∫e^(2x)cos(x)dx + c

    5∫e^(2x)cos(x) dx = sin(x)e^(2x) + 2e^(2x)cos(x) + c

    ∫e^(2x)cos(x) dx = (1/5)e^(2x)[sin(x) + 2cos(x)] + c

    Answer: (1/5)e^(2x)[sin(x) + 2cos(x)] + c

Question Stats

Latest activity: earlier.
This question has 2 answers.

BECOME A GUIDE

Share your knowledge and help people by answering questions.