Question:

Intergration by parts?

by  |  earlier

0 LIKES UnLike

How to integral In(sinx)/tanx dx by using intergration by parts?

 Tags:

   Report

5 ANSWERS


  1. i'd rather use substitution

    ∫ln(sinx) * (cosx/sinx) dx

    let t = sinx

    dt = cosx dx

    substitute:

    ∫ln(t)/t dt

    let u = ln(t)

    du = 1/t dt

    ∫u du

    (1/2) u² + C

    (1/2) Ln²(t) + C

    (1/2) Ln²(sinx) + C


  2. int(In(sinx)/tanx dx)

    int(In(sinx)cotx dx)

    int(In(sinx)cosx/sinx dx)

    why do you want to do this by parts, substitution is easier

    u=ln(sinx)

    du=cosx/sinx dx

    int(In(sinx)cosx/sinx dx)

    int(udu)

    =u^2/2

    =0.5(ln(sinx))^2

    i will still do it by parts too

    int(In(sinx)cotx dx)

    u=ln(sinx)                  dv=cotx dx

    du=cosx dx/sinx          v=ln(sinx)

    du=cotx dx

    int(In(sinx)cotx dx)=(ln(sinx))^2-int(ln(sinx)cotx dx)

    int(In(sinx)cotx dx) +int(ln(sinx)cotx dx)=(ln(sinx))^2

    2int(In(sinx)cotx dx)=(ln(sinx))^2

    int(In(sinx)cotx dx)=0.5(ln(sinx))^2

  3. ∫ In(sinx) / tanx dx =

    rewrite it as:

    ∫ In(sinx) / tanx dx =

    ∫  In(sinx) (1/ tanx) dx =

    ∫  In(sinx) (cotx) dx =

    let:

    ln(sinx) = u → (cosx/sinx) dx = du → cotx dx = du

    cotx dx = dv → (cosx/sinx) dx = dv → d(sinx)/sinx = dv → ln(sinx) = v

    thus, integrating by parts, you get:

    ∫  In(sinx) (cotx) dx = ln(sinx) ln(sinx) - ∫ ln(sinx) cotx dx →

    having got the same unknown integral at both sides, collect it at left side as:

    ∫ In(sinx) (cotx) dx + ∫ ln(sinx) cotx dx = ln²(sinx) →

    2 ∫ ln(sinx) cotx dx = ln²(sinx) →

    ∫ ln(sinx) cotx dx = (1/2) ln²(sinx) + C

    in conclusion,

    ∫ [ln(sinx) / tanx] dx = ∫ ln(sinx) cotx dx = (1/2) ln²(sinx) + C

    I hope it helps...

    Bye!

  4. The two prior answers are right - substitution is easier.  However, I'm guessing that your instructor requires you to solve this problem by IBP.  

    Basic formula:

    int(u dv) = uv - int(v du)

    define:

    u = ln(|sin(x)|) ==> du = cos(x)/sin(x) = 1/tan(x)

    dv = 1/tan(x) dx ==> v = int(cot(x) dx) = ln|sin(x)|

    Applying the formula yields:

    int(ln|sin(x)|/tan(x) dx)

    = (ln|sin(x)|)*(ln|sin(x)|) - int(ln|sin(x)|/tan(x))

    = (ln|sin(x)|)^2 - int(ln|sin(x)|/tan(x))

    =[(ln|sin(x)|)^2] / 2 + C

    Don't forget than the natural logarithm must be positive, hence the |sin(x)| rather than just sin(x).

  5. int In(sinx)/tanx dx=

    int In(sinx)*cosxdx/sinx=

    = int In(sinx)*d(sinx)/sinx=

    =int In(sinx)*d[In(sinx)]=

    =1/2*ln²(sinx)+c
You're reading: Intergration by parts?

Question Stats

Latest activity: earlier.
This question has 5 answers.

BECOME A GUIDE

Share your knowledge and help people by answering questions.