Question:

Int(sin(2x)^3 cos(2x)^4) ?

by  |  earlier

0 LIKES UnLike

integral of sin^3 (2x) times cos^4 (2x)

 Tags:

   Report

3 ANSWERS


  1. ∫ sin^3(2x) cos^4(2x) dx =

    since sine is odd-powered, rearrange the integrand as:

    ∫ sin^2(2x) cos^4(2x) sin(2x) dx =

    and rewrite the first factor in terms of cos(2x) as:

    ∫ [1 - cos^2(2x)] cos^4(2x) sin(2x) dx =

    expand the part in terms of cos(2x) into:

    ∫ [cos^4(2x) - cos^6(2x)] sin(2x) dx =

    let cos(2x) = u

    differentiate both sides into:

    d[cos(2x)] = du →

    2 [-sin(2x)] dx = du →

    sin(2x) dx (that is, what actually appears in your integral) = (-1/2) du

    thus, substituting, you get:

    ∫ [cos^4(2x) - cos^6(2x)] sin(2x) dx = ∫ (u^4 - u^6) (-1/2) du =

    (-1/2) ∫ (u^4 - u^6) du =

    (-1/2) ∫ u^4 du + (1/2) ∫ u^6 du =

    (-1/2) [u^(4+1)] /(4+1) + (1/2) [u^(6+1)] /(6+1) + C =

    (-1/2)(1/5) u^5 + (1/2)(1/7) u^7 + C =

    (-1/10) u^5 + (1/14) u^7 + C

    then substitute back u = cos(2x), yielding:

    ∫ sin^3(2x) cos^4(2x) dx = (-1/10) cos^5(2x)+ (1/14) cos^7(2x) + C

    I hope this helps..

    Bye!


  2. when ever there is cos*sin problem choose the even function to be t

    let cos(2x)=t

    -2sin(2x)dx=dt

    now integral wud be

    int((-1/2)(1-cos^2(2x)*cos^4(2x)*sin(2... )

    = int ((-1/2)(1-t^2)(t^4))dt

    = -1/2(t^5/5+ t^7/7)

    now put t= cos(2x)

  3. jhakaas dear, tumne last step me plus -minus ki mistake kar di.

    ∫(sin³2x)*(cos2x)^4 dx

    ∫sin²2x*sin2x*(cos2x)^4   dx

    ∫(1 - cos²2x)*(cos2x)^4*( sin2x) dx

    Assume cos2x = u

    -2sin2xdx  = du

    sin2xdx  = -du/2

    -1/2∫(1 - u²)*u^4 du

    1/2∫u^6du -  1/2∫u^4du

    (u^7)/14  - (u^5)/10  + c

    [(cos2x)^7]/14  -  [(cos2x)^5]/10 + c

Question Stats

Latest activity: earlier.
This question has 3 answers.

BECOME A GUIDE

Share your knowledge and help people by answering questions.