Question:

Is anything being done to reverse the damage to the ozone?

by  |  earlier

0 LIKES UnLike

Why is it everyone is complaining about the ozone layer being destroyed and saying we need to stop the pollution? Is anything being done to reverse the damage?

 Tags:

   Report

2 ANSWERS


  1. Yes, things are being done.  It was started in the 1980's, right after the ozone hole was dicovered, but the job isn't finished.

    "Concerns about the environmental effects of CFCs led to partial restrictions on their use in the early 1980s, when they were prohibited as propellants in aerosol cans. Industrial chemists also began a search for chemical compounds to replace CFCs in refrigerators, air conditioners, manufacturing processes and aerosol generators. Hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs) can replace CFCs for many purposes, and ammonia functions well as a refrigerant in modern cooling units. HCFCs and HFCs are much less durable than CFCs in the lower atmosphere because they contain hydrogen atoms in their molecular structure, are thus less likely to persist and carry their ozone-destroying chlorine and fluorine atoms into the stratosphere.

    The United Nations Environment Program (UNEP) convened the Montreal Protocol on Substances that Deplete the Ozone Layer to regulate production, use, and emission of CFCs in 1987. The Montreal Protocol was a comprehensive, international agreement designed to slow and eventually reverse stratospheric ozone depletion. The 1987 protocol called for a 50% reduction of CFC emissions by 2000. Scientific advances prompted amendments to the protocol in 1990 and 1992, the most recent of which required signatories to cease production of the main CFCs by 1995. (Exceptions were allowed for limited essential uses, including medical sprays.) Some major industrial users of CFCs committed to earlier phaseouts, and the European community agreed to an even stricter set of regulations that requires even tighter restrictions on CFCs and other ozone-depleting chemicals. As a result of these regulatory measures, CFC concentrations declined in lower atmosphere, and remained constant in the upper atmosphere in 2000. Computational models predict that the Antarctic ozone hole will disappear by about 2050. Because of the unusually rapid and effective international response to the problem of stratospheric ozone depletion caused by emissions of CFCs, the Montreal Protocol and subsequent agreements on CFCs have been described as an environmental success story."

    "The Antarctic ozone hole is expected to continue for decades. Ozone concentrations in the lower stratosphere over Antarctica will increase by 5%–10% by 2020 and return to pre-1980 levels by about 2060–2075, 10–25 years later than predicted in earlier assessments. This is because of revised estimates of atmospheric concentrations of Ozone Depleting Substances — and a larger predicted future usage in developing countries."

    "Painstaking research on ozone and the atmosphere over the past 40 years has led to a global ban on CFC production. Since 1987, more than 150 countries have signed an international agreement, the Montreal Protocol, which called for a phased reduction in the release of CFCs such that the yearly amount added to the atmosphere in 1999 would be half that of 1986. Modifications of that treaty called for a complete ban on CFCs which began in January 1996. Even with this ban in effect, chlorine from CFCs will continue to accumulate in the atmosphere for another decade. It may take until the middle of the next century for ozone levels in the Antarctic to return to 1970s levels.

    More globally, ozone depletion is expected to remain a fact of life for several decades to come, but thanks to the research that led to early recognition of the problem and steps that have been taken to address it, the potential consequences are much less severe than they otherwise would have been.

    Scientists estimate, for example, that if active research in stratospheric chemistry had not been in place at the time the ozone hole was discovered in 1985 and confirmed in 1986, global ozone depletion, measuring 4 percent today, would be close to 10 percent by the year 2000. Even larger ozone depletion would have been observed over the United States and Eastern Europe, substantially exceeding the current measurements there of about 10 percent loss in winter and spring and 5 percent in summer and autumn. These larger losses have been avoided because basic research in the atmospheric sciences had already advanced to a level where it was able to explain the chemical reactions occurring in the ozone layer. That knowledge allowed other informed political and regulatory decisions to be made."

    "In mid-1986 the solid industry resistance to international regulatory action was fractured when the Alliance for Responsible CFC Policy, the trade group representing US users and manufacturers of CFCs, called for internationally negotiated limits on the manufacture of CFCs. Although chemical companies in Europe and Japan initially viewed this action as a betrayal, industry positions changed as industry scientists worldwide joined in the consensus that the ozone layer was genuinely threatened.

    Probably the greatest success in international environmental protection has been the rapid action to negotiate and implement sweeping measures to eliminate or greatly reduce use of substances that threaten the stratospheric ozone layer."


  2. O3, which is the oxygen molecule that is ozone, breaks down by nitrogen and carbon monoxide fumes....O2 is a regular oxygen molecule....there is nothing that scientists have figured out what to do about it....

Question Stats

Latest activity: earlier.
This question has 2 answers.

BECOME A GUIDE

Share your knowledge and help people by answering questions.