Question:

Is the USA in any real danger due to the Atom Smasher in Switzerland?

by  |  earlier

0 LIKES UnLike

Please explain.

 Tags:

   Report

6 ANSWERS


  1. If there were the slightest chance it's dangerous, it would not be brought online. Those that say there is a risk do not have anywhere near enough understanding of the physics involved to make that kind of statement.


  2. There are two risks from the Large Hadron Collider:

    The first is that a black hole is produced and that it sticks around long enough to eat up the Earth. While it is expected that black holes will be produced, they will be extremely tiny. They will be so small that they will dissipate with in fractions of a second before they have any chance to do any damage.

    The other fear is that the LHC will produce magnetic monopoles. There are no know monopoles in nature (magnets come with dipoles - north and south) and the worry is that a created monopole will convert all the other matter in the world into monopoles, thus destroying us. The chances of a monopole being created are infinitesimally small, and even if they are created it's not known if they will actually convert other matter to monopoles.

    Basically the risk of any damage is infinitesimally small. I, personally, am not too concerned because even if something does go wrong, the whole world will just disappear - no pain, no nothing.  

  3. There should be no danger to anywhere, from the LHC at CERN, least of all the continental USA!  I'll try and outline a little of the physics that the L(arge) H(adron) C(ollider) was built to explore.

    The LHC is intended to look for the Higg's boson and physics beyond the standard model of particle physics such as super symmetry and dark matter/energy candidates. The standard model does not predict that the LHC will produce mini-Black Holes; however, if physics beyond the standard model is found to hold, then mini-Black Holes might be possible. These mini-Black holes might be produced at a rate in the order of one per second. According to the some calculations, these ‘holes’ are harmless because they will quickly decay via ‘Hawking radiation’ and explode into a shower of particles. The problem with ‘Hawking radiation’ is that it too is unproven physics and, thus, might not be a correct explanation for the disappearance of mini-Black Holes. An unlikely, accumulation of mini-Black Holes could be a ‘small’ problem.

    Below I will detail some of the physics that the LHC is attempting to explore.

    The weak interaction, as you know, is mediated by spin-1 bosons which act as force carriers between quarks and/or leptons. There are three of these intermediate vector bosons, which were all discovered at CERN in 1983. They are the charged bosons W+ and W- and the neutral Z0. Their masses are measured to be: -

    M(W) = 80.3 Gev/c² and M(Z) = 91.2 Gev/c²

    which gives their ranges as: -

    R(W) ≈ R(Z) ≈ 2 x 10^-3 fm

    Their decay modes are as follows: -

    W+ -> l+ + vl

    W- -> l- + vl'

    Z0 -> l+ + l-

    Where the l's stand for leptons and the v's for neutrinos with the prime ' indicating an anti-neutrino.

    This introduction sets the scene for what follows!

    The intermediate vector bosons gain their mass from the Higgs boson. Please allow me to explain.

    During the nineteen-sixties the theoretical physicists Glashow, Salam and Weinberg developed a theory which unified the electromagnetic and the weak nuclear forces. This theory is known as the ‘electroweak’ theory, it predicted the neutral vector boson Z0, and weak nuclear force reactions arising from its exchange, in what are known as neutral current reactions. The theory also accounted for the heavy charged bosons W+ and W-, required for the mediation of all observed weak interactions, known as charged current reactions. These particles were discovered in 1983.This unified theory is a ‘gauge invariance’ theory, which means that if the components of its underlying equations are transformed, in position or potential, they still predict exactly the same physics. Because the force carrying particles (Z0, W+ and W-), of this theory, are massive spin-1 bosons a spin-0 boson is required to complete the theory. This spin-0 boson is the as yet unobserved ‘Higgs’ boson.

    The masses of the force carrying bosons (Z0, W+ and W-), for the electroweak theory, are derived from their interaction with the scalar Higgs field. Unlike other physical fields, the Higgs field has a non-zero value in the vacuum state, labelled φ0, and furthermore this value is not invariant under gauge transformation. Hence, this gauge invariance is referred to as a ‘hidden’ or ‘spontaneously broken’ symmetry. The Higgs field has three main consequences’. The first, is that the electroweak force carrying bosons (Z0, W+ and W-) can acquire mass in the ratio: -

    M(W) =cosθ(W)

    _____

    M(Z)

    Where θ(W) Is the electroweak mixing angle. These masses arise from the interactions of the gauge fields with the non-zero vacuum expectation value of the Higgs field. Secondly, there are electrically neutral quanta H0, called Higgs bosons, associated with the Higgs field, just as photons are associated with the electromagnetic field. Thirdly, the Higgs field throws light on the origin of the quark and lepton masses. In the absence of the Higgs field the requirements of gauge invariance on the masses of spin-½ fermions (quarks and leptons etc,) would set them at zero for parity violating interactions (non-mirror image interactions). Parity is a conserved quantity in strong nuclear force and electromagnetic interactions but is violated in weak nuclear force interactions, which would make quark and lepton masses zero in this later case. However, interactions with the Higgs field can generate fermion masses due to the non-zero expectation value φ0 of this field, as well as with interactions with the Higgs bosons. These interactions have a dimensionless coupling constant g(Hff) related to the fermions mass m(f) by the expression: -

    g(Hff) = √ (√2G(f)m(f) ²)

    Where G(f) is the Fermi coupling constant and f is any quark or lepton flavour. However, this theory, that the fermion masses are mediated by their interaction with the Higgs field, does not predict their mass m(f). However, with the future discovery of the Higgs boson the above equation can be used to confirm the observed coupling constant g(Hff).

    At CERN, the Large Hadron Collider (LHC) will search for the Higgs boson at an energy of up to 1 TeV by colliding protons in the reaction: -

    p + p -> H0 + X

    Where X is any state allowed by the usual conservation laws.

      

  4. OH god yes. We're all going to die. See this dramatic reenactment.

    http://www.youtube.com/watch?v=BXzugu39p...

    Lol, I don't really believe we're in any trouble.

  5. Yes, because of politics, the USA will fall behind in high energy physics and the possible discovery of alternative energy sources that the country needs to survive as an industrial power.  There was once a plan to build a "smasher" comparable to the LHC in the USA (Texas I think, but am not sure), but politics got in the way and the plan was scrapped.  So the real danger is that the USA will continue to decline economically.

  6. oh please... atom smashers aren't dangerous. they just smash a few atoms, and create theories.

    atoms aren't dangerous. just look at the atomic bombs if you don't believe me.

Question Stats

Latest activity: earlier.
This question has 6 answers.

BECOME A GUIDE

Share your knowledge and help people by answering questions.
Unanswered Questions