Question:

Photosyntesis?

by  |  earlier

0 LIKES UnLike

1.State an advantage having more than one type of photosynthetic pigment gives a plant.

2.Explain the chemical role of water in photosynthesis.

3.What are the two main products of the light reactions?

4.If ATP is produced during the first stage of photosynthesis, why invest energy to make a carbohydrate?

5.What is the main difference between non-cyclic and cyclic phosphorylation?

6.How does the NADPH and ATP formed in the light reactions help in the biosynthesis of complex carbon structures?

7.What is a C4 plant? Why did these plants evolve such mechanism?

8.State the importance of photosynthesis at the

a.biochemical/cellular level of organization

b.organismal level

c.ecosystem level

(Question eight will require conceptual understanding of the process of photosynthesis. Although it will be time-consuming to answer this question, this question is important for understanding the overall concept of photosynthesis.)

 Tags:

   Report

1 ANSWERS


  1. pigment is any substance that absorbs light. The color of the pigment comes from the wavelengths of light reflected (in other words, those not absorbed). Chlorophyll, the green pigment common to all photosynthetic cells, absorbs all wavelengths of visible light except green, which it reflects to be detected by our eyes. Black pigments absorb all of the wavelengths that strike them. White pigments/lighter colors reflect all or almost all of the energy striking them. Pigments have their own characteristic absorption spectra, the absorption pattern of a given pigment. the Light Dependent Processes (Light Reactions) light strikes chlorophyll a in such a way as to excite electrons to a higher energy state. In a series of reactions the energy is converted (along an electron transport process) into ATP and NADPH. Water is split in the process, releasing oxygen as a by-product of the reaction. The ATP and NADPH are used to make C-C bonds in the Light Independent Process (Dark Reactions).

    In the Light Independent Process, carbon dioxide from the atmosphere (or water for aquatic/marine organisms) is captured and modified by the addition of Hydrogen to form carbohydrates (general formula of carbohydrates is [CH2O]n). The incorporation of carbon dioxide into organic compounds is known as carbon fixation. The energy for this comes from the first phase of the photosynthetic process. Living systems cannot directly utilize light energy, but can, through a complicated series of reactions, convert it into C-C bond energy that can be released by glycolysis and other metabolic processes

    C-4 Pathway

    Some plants have developed a preliminary step to the Calvin Cycle (which is also referred to as a C-3 pathway), this preamble step is known as C-4. While most C-fixation begins with RuBP, C-4 begins with a new molecule, phosphoenolpyruvate (PEP), a 3-C chemical that is converted into oxaloacetic acid (OAA, a 4-C chemical) when carbon dioxide is combined with PEP. The OAA is converted to Malic Acid and then transported from the mesophyll cell into the bundle-sheath cell, where OAA is broken down into PEP plus carbon dioxide. The carbon dioxide then enters the Calvin Cycle, with PEP returning to the mesophyll cell. The resulting sugars are now adjacent to the leaf veins and can readily be transported throughout the plant.

    Difference btw cyclic phosphorylation and non cyclic is that

    in cyclic the electron comes back while in non cyclic splitting up of water provides to compensate the elctron to comensate the orginal chloroplast and oxygen forms a waste product.

    Photosynthesis and the environment. Currently, there is a lot of discussion concerning the possible effects of carbon dioxide and other "greenhouse gases" on the environment. As mentioned above, photosynthesis converts carbon dioxide from the air to carbohydrates and other kinds of "fixed" carbon and releases oxygen to the atmosphere. When we burn firewood, ethanol, or coal, oil and other fossil fuels, oxygen is consumed, and carbon dioxide is released back to the atmosphere. Thus, carbon dioxide which was removed from the atmosphere over millions of years is being replaced very quickly through our consumption of these fuels. The increase in carbon dioxide and related gases is bound to affect our atmosphere. Will this change be large or small, and will it be harmful or beneficial? These questions are being actively studied by many scientists today. The answers will depend strongly on the effect of photosynthesis carried out by land and sea organisms. As photosynthesis consumes carbon dioxide and releases oxygen, it helps counteract the effect of combustion of fossil fuels. The burning of fossil fuels releases not only carbon dioxide, but also hydrocarbons, nitrogen oxides, and other trace materials that pollute the atmosphere and contribute to long-term health and environmental problems. These problems are a consequence of the fact that nature has chosen to implement photosynthesis through conversion of carbon dioxide to energy-rich materials such as carbohydrates. Photosynthesis and energy production. As described above, most of our current energy needs are met by photosynthesis, ancient or modern. Increasing the efficiency of natural photosynthesis can also increase production of ethanol and other fuels derived from agriculture. However, knowledge gained from photosynthesis research can also be used to enhance energy production in a much more direct way. Although the overall photosynthesis process is relatively wasteful, the early steps in the conversion of sunlight to chemical energy are quite efficient. Why not learn to understand the basic chemistry and physics of photosynthesis, and use these same principles to build man-made solar energy harvesting devices? This has been a dream of chemists for years, but is now close to becoming a reality. In the laboratory, scientists can now synthesize artificial photosynthetic reaction centers which rival the natural ones in terms of the amount of sunlight stored as chemical or electrical energy. More research will lead to the development of new, efficient solar energy haPhotosynthesis and medicine. Light has a very high energy content, and when it is absorbed by a substance this energy is converted to other forms. When the energy ends up in the wrong place, it can cause serious damage to living organisms. Aging of the skin and skin cancer are only two of many deleterious effects of light on humans and animals. Because plants and other photosynthetic species have been dealing with light for eons, they have had to develop photoprotective mechanisms to limit light damage. Learning about the causes of light- induced tissue damage and the details of the natural photoprotective mechanisms can help us can find ways to adapt these processes for the benefit of humanity in areas far removed from photosynthesis itself. For example, the mechanism by which sunlight absorbed by photosynthetic chlorophyll causes tissue damage in plants has been harnessed for medical purposes. Substances related to chlorophyll localize naturally in cancerous tumor tissue. Illumination of the tumors with light then leads to photochemical damage which can kill the tumor while leaving surrounding tissue unharmed. Another medical application involves using similar chlorophyll relatives to localize in tumor tissue, and thus act as dyes which clearly delineate the boundary between cancerous and healthy tissue. This diagnostic aid does not cause photochemical damage to normal tissue because the principles of photosynthesis have been used to endow it with protective agents that harmlessly convert the absorbed light to heat. rvesting technologies based on the natural process.

You're reading: Photosyntesis?

Question Stats

Latest activity: earlier.
This question has 1 answers.

BECOME A GUIDE

Share your knowledge and help people by answering questions.