Question:

Please help with integrals?

by  |  earlier

0 LIKES UnLike

evaluate the integral

∫ e^ -θ cos2θdθ

 Tags:

   Report

1 ANSWERS


  1. Integration by parts: ∫ u dv = uv - ∫ v du

    let u = e^ (-θ)

    then du = -(e^(-θ)) dθ

    and let dv = cos(2θ) dθ

    then v =  sin(2θ)/2

    hence

    1] ∫ e^ (-θ) cos (2θ) dθ = e^ (-θ)*sin(2θ)/2 + 1/2 ∫ e^ (-θ) sin(2θ)dθ

    Now apply ∫ by parts to

    ∫ e^ (-θ) sin(2θ) dθ

    let u = e^ (-θ)

    then du = -(e^(-θ)) dθ

    and let dv = sin(2θ) dθ

    then v =  - cos(2θ)/2

    hence

    2] ∫ e^ (-θ) sin(2θ) dθ = - e^ (-θ)*cos(2θ)/2 - 1/2 ∫ e^ (-θ) cos(2θ)dθ

    Substitute 2] into 1]

    ∫ e^ (-θ) cos (2θ) dθ = e^ (-θ)*sin(2θ)/2 + 1/2 * [- e^ (-θ)*cos(2θ)/2 - 1/2 ∫ e^ (-θ) cos(2θ)dθ]

    do the algebra and you obtain...

    5/4 * ∫ e^ (-θ) cos (2θ) dθ = e^ (-θ)*sin(2θ)/2 - e^ (-θ)*cos(2θ)/4

    so...

    ∫ e^ (-θ) cos (2θ) dθ = 1/5 * (2 e^ (-θ)*sin(2θ) - e^ (-θ)*cos(2θ))

    Simplified answer:

    ∫ e^ (-θ) cos (2θ) dθ = 1/5 * e^ (-θ) * (2*sin(2θ) - cos(2θ)) + c

Question Stats

Latest activity: earlier.
This question has 1 answers.

BECOME A GUIDE

Share your knowledge and help people by answering questions.
Unanswered Questions