Question:

Prove: tan4A = 4tanA - 4tan^3A / 1 - 6tan^2A + tan^4A?

by  |  earlier

0 LIKES UnLike

Prove: tan4A = 4tanA - 4tan^3A / 1 - 6tan^2A + tan^4A?

 Tags:

   Report

2 ANSWERS


  1. 1st use  the  sin and cos addition formulae

    sin 2A = 2 sin A cos A       cos 2A = ....

    plus the fact that sin^2 + cos^2 =1

    to prove that tan 2A = (1- tan^2A) / (1 + tan^2 A)

    Now apply this to tan 4A = ...in terms of tan 2A = .... in terms of tanA

    and that's your answer.


  2. Take the LHS

    We know tan 2x = 2tanx/( 1-tan²x)

    Using this we can write,

    tan 4A = tan2(2A)

              

               = 2 tan2A/( 1- tan² 2A)............(1)

      

    tan2A = 2tanA / ( 1- tan² A)...............(2)

    Putting (2) in (1)



                   2 [2tanA / (1- tan² A)]                                                        

    =-------------------------------------...                                    

                  1- [ 2 tanA / (1- tan²A)]²

                     4 tanA /( 1- tan²A)                                                        

             =   ----------------------------------------...                                                

                  [ (1- tan²A)² - 4tan²A] /( 1-tan²A)²                                        

    [Cross multiply in denominator , now one of 1- tan²A gets cancelled]

                              4tan A                                                                  

             =     ----------------------------------------...

                    [1 + tan^4 x - 2tan² A- 4tan²A]/(1-tan²A)

    Denominator of the denominator is the numerator

             = 4tanA ( 1- tan²A)/[1 - 6tan²A + tan^4A]

            

             = (4 tanA - 4 tan³A) /[ 1- 6tan²A + tan^4A]

    Sorry the equal sign is coming inside the fraction how many ever times i try

Question Stats

Latest activity: earlier.
This question has 2 answers.

BECOME A GUIDE

Share your knowledge and help people by answering questions.