Question:

Further Differentiation Calculus?

by  |  earlier

0 LIKES UnLike

If y=e^xtanx, show that d²y/dx² = e^x(2tan³x + 2tan²x + 3tanx +2)

10pts given to first correct answer with clear working thanks :)

 Tags:

   Report

4 ANSWERS


  1. First, the needed differentiation rules:

    Product rule for differentiation:

    d/dx [ g(x) · h(x) ] = g(x) · d/dx [ h(x) ] + h(x) · d/dx [ g(x) ]

    or, written more simply:

    ( a·b )' = a·b' + b·a'

    Derivative of tangent:

    d/dx [ tan(x) ] = sec²(x)

    ——————————————————————————————————————

    y = e^(x) · tan(x)

    Differentiate twice with respect to x:

    d/dx [ y ] = d/dx [ e^(x) · tan(x) ]

    You have to use the product rule on the right, since there are two functions of x multiplied together:

    dy/dx = e^(x) · d/dx [ tan(x) ] + tan(x) · d/dx [ e^(x) ]

    dy/dx = e^(x) · sec²(x) + tan(x) · e^(x)

    ——————————————————————————————————————

    Use the Pythagorean trigonometric identity:

    sin²θ + cos²θ = 1

    sin²θ/cos²θ + cos²θ/cos²θ = 1/cos²θ

    tan²θ + 1 = sec²θ

    ——————————————————————————————————————

    Replace secant squared and factor out e^x:

    dy/dx = e^(x) · ( tan²(x) + 1 ) + tan(x) · e^(x)

    dy/dx = e^(x) · ( tan²(x) + tan(x) + 1 )

    ----

    Differentiate again:

    d/dx [ dy/dx ] = d/dx [ e^(x) · ( tan²(x) + tan(x) + 1 ) ]

    Use the product rule:

    d²y/dx² = e^(x) · d/dx [ ( tan²(x) + tan(x) + 1 ) ] + ( tan²(x) + tan(x) + 1 ) · d/dx [ e^(x) ]

    Differentiate and use the chain rule on tangent squared:

    = e^(x)·( 2·tan(x)·d/dx[ tan(x) ] + sec²(x) + 0 ) + ( tan²(x) + tan(x) + 1 )·e^(x)

    = e^(x)·( 2·tan(x)·sec²(x) + sec²(x) ) + ( tan²(x) + tan(x) + 1 )·e^(x)

    Factor out secant:

    = e^(x)·{ [ 2·tan(x) + 1 ]·sec²(x) } + ( tan²(x) + tan(x) + 1 )·e^(x)

    Use the identity to change secant to tangent again:

    = e^(x)·{ [ 2·tan(x) + 1 ]·[ tan²(x) + 1 ] } + ( tan²(x) + tan(x) + 1 )·e^(x)

    Use FOIL:

    = e^(x)·[ 2·tan³(x) + 2·tan(x) + tan²(x) + 1 ] + ( tan²(x) + tan(x) + 1 )·e^(x)

    Factor out e^(x) and combine like terms:

    = e^(x)·[ 2·tan³(x)  + 2·tan²(x) + 3·tan(x) + 2 ]


  2. step 1. (uv)' = uv' + u'v

    where the little ' means derivative.

    we also know that:

    d tan x/dx = sec ^2 x

    and

    d sec x / dx = sec x tan x

    and

    d sec^2 x/dx = 2 sec^2 x tan x

    dy/dx = e^x * sec^2x + e^x * tan x

    step 2. again

    e^x *  sec^2x  + e^x * 2 sec^2 x tan x + e^x * sec^2 x + e^x * tan x

    now simplify:

    e^x * (sec^2 x + 2 sec^2 x tan x +  sec^2 x + tan x)

    We also know  from trigonometry that sec^2 x = 1 + tan^2 x

    e^x * (sec^2 x + 2 sec^2 x tan x +  sec^2 x + tan x) becomes

    e^x * ( 1 + tan^2 x + 2 sec^2 x tan x +  1 + tan^2 x + tan x)

    and

    e^x * ( 1 + tan^2 x + 2 tan ^3 x + 2 tan x  +  1 + tan^2 x + tan x)

    simplified:

    e^x * (2 tan ^3 x  + 2  tan^2 x + 3tan x + 2)

    Please check my calculations.


  3. y=e^xtanx

    dy/dx=e^xtanx+e^xsecc

    =e^x(tanx+sec²x)

    By using chain rule to diferentiate sec²x

    =secx(secxtanx)+secx(secxtanx)

    =2secx(secxtanx)

    =2tanxsec²x

    =2tanx(1+tan²x)

    =2tanx+2tan³x

    use chain rule to direfentiate dy/dx

    d²y/dx²=e^x(tanx+sec²x)+e^x(sec²x+2tan...

    =e^x(tanx+1+tan²x)+e^x(1+tan²x+2tanx+2...

    =e^x(tanx+1+tan²x+1+tan²x+2tanx+2tan³x...

    =e^x(2tan³x+2tan²x+3tanx+2)

  4. y=e^xtanx,

    Use the product rule

    dy/dx = e^x sec^2(x) + e^x tan(x)

    d^2y/dx^2 = use the product rule for each term.

    d^2y/dx^2 = e^x sec^2(x)+ e^x 2 sec(x) sec(x) tan(x) + e^x sec^2(x) + e^x tan(x)

    d^2y/dx^2 = 2 e^xsec^2(x) + e^xtan(x) [ 2sec^2(x) +1]

Question Stats

Latest activity: earlier.
This question has 4 answers.

BECOME A GUIDE

Share your knowledge and help people by answering questions.