Question:

Super Crazy PreCalculus Problems? Help me!?

by  |  earlier

0 LIKES UnLike

5. Simplify: (a) log2 5 + log2(x2 -1) - log2(x - 1)

(b) 2 log4 9 - log2 3

(c) 3^2 log3 5

 Tags:

   Report

4 ANSWERS


  1. Basic rules to remember:

    LogBaseN(x) + LogBaseN(y) = LogBaseN(xy)

    LogBaseN(x) - LogBaseN(y) = LogBaseN(x÷y)

    x·LogBaseN(y) = y^x

    N^LogBaseN(x) = x

    LogBaseN(N^x) = x

    LogBaseN(x) = Ln(x) ÷ Ln(N)


  2. {1}-- log_b(a) + log_b(c) = log_b(ac)

    {2}-- log_b(d) - logb(f) = log_b(a/f)

    a.)------

    log_2(5) + log_2(x^2 - 1) - log_2(x - 1)

    by the first rule {1}

    = log_2(5*[x^2 - 1]) - log_2(x-1)

    = log_2(5x^2 - 5) - log_2(x-1)

    now by rule {2}

    = log_2([5x^2 - 5]/[x-1])

    then, if you need to use an old scientific calculator

    {3.1}-- log_b(a) = log(a)/log(b)  ÃƒÂ‚    OR if you want to use ln instead

    {3.2}-- log_b(a) = ln(a)/ln(b)

    b.)------

    2log_4(9) - log_2(3)

    by rule {3.1} OR {3.2}  --- i'm going to show how to use these rules

    = 2[log(9)/log(4)] - log(2)/log(3)

    common denominator

    = {2[log(9)log(3)] - log(2)log(4)} / {log(4)log(3)}

    = {2log(3*3)log(3) - log(2)log(2*2)} / {log(4)log(3)}

    by rule {1}

    = {2[log(3)+log(3)]log(3) - log(2)[log(2)+log(2)]} / {log(4)log(3)}

    = {2[2log(3)]log(3) - log(2)[2log(2)]} / {log(4)log(3)}

    = {4[log(3)]^2) - 2[log(2)]^2} / {log(4)log(3)}

    = 2 * {[log(3)]^2 - [log(2)]^2} / {log(4)log(3)}

    use calculator

    2 log_4(9) - log_2(3)

    by rule {1}

    =2 * log(4)/log(9) - log(2)/log(3)

    =1.584962501

    c.)----------

    3^2 log_3(5)

    by rule {1}

    = 3^2 log(3)/log(5)

    = 4.394920562

    ---------------



    SHARP EL-W531H WriteView  has a function to directly calculate log_b(a). You do not need to convert the logs!

  3. a) assuming 2 is base

    and using formula  log X+log Y  = log(X*Y)

        log X - log Y  = log(X/Y)

    we get  log ( 5* (x+1)(x-1)) - log(x-1)

                 log (5 * (x+1)(x-1)/(x-1))

                 log (5 * (x+1))

    b)  log (a) b base a

         can be written as   log b / log a

         to any base

    so we get

          2 log (4)  9 =   2  log 9/log 4 = 2 log 9/ log 2^2

           = 2 log 9/  2 log 2

          = log 9/ log 2

        ie   log (2)  9

        we get  log  (2)  (9/3)

        log (2)  3

    c)

         3^ 2 log 3  5

      =  3 ^ log  3  25

      =   25  (using property a  ^ log a  b  = b)

  4. 5.(a) log2 5 + log2(x2 -1) - log2(x - 1)

          =log2(( 5 x (2x-1)) / (x-1))

          =log2((10x-5) / (x-1))

       (b) 2 log4 9 - log2 3

          =2( log2(9) /log2(4) ) - log2(3)

          =2( log2(9)/ log2(2^2) ) - log2(3)

          =2(log2(9) / 2log2(2)) - log2(3)      ***hey, log2(2)=1

          =2log2(9) / 2 - log2(3)

          =log2(9) - log2(3)

          =log2(9/3)

          =log2(3)    **u can stop here**

          =ln3 / ln2

          =1.58496

       (c)3^2 log3 5

          = 3^(log3(5^2))

          = 3^(log3(25))

          = 3^(ln25 / ln3)

          = 3^(2.92995)

          =25

          

Question Stats

Latest activity: earlier.
This question has 4 answers.

BECOME A GUIDE

Share your knowledge and help people by answering questions.