Question:

Trigonometry related questions?

by  |  earlier

0 LIKES UnLike

if A=60, B=30 verify that tan (A -- B)=

tan A - tan B

-------------------

1+tan A tan B

 Tags:

   Report

5 ANSWERS


  1. tan(A-B)= tan(60-30)= tan30= 1\sqrt3

    Now,

           ( tan60-tan30)\(1+tan60 tan30)

          

           = (sqrt3-1\sqrt3)\1+ sqrt3.1\sqrt3

           =(( 3-1)\sqrt3)\ 1+1

           = (2\sqrt3)\2 = 1\sqrt3

      therefore tan(A-B)= (tanA -tanB)\1+tanA tanB


  2. just put the values

    at lhs you have tan30=1/sqrt3

    at rhs you have tan 60-tan30/(1+tan60*tan30)

                          =(sqrt3 - 1/sqrt 3)/(1+sqrt3*1/sqrt3)=1/sqrt3

  3. tan(60) - tan(30)

    ------------------------- =

    1 + tan(60)tan(30)

    sqrt(3) - 1/sqrt(3)

    ------------------------------- =

    1 + sqrt(3) * 1/sqrt(3)

    3 / sqrt(3) - 1/sqrt(3)

    ----------------------------- =

    1 + 1

    2 / sqrt(3)

    -------------- =

    2

    1 / sqrt(3) = tan(30) = tan(60 - 30)

    Oh, and by the way, PAUL WALL is a spammer and probably a fraudster.

  4. Substitute the values, we know:

    tan(A-B) = tan (60-30) = tan30 = 1/√3

    tan60 = √3

    So, LHS:

    tan30 = 1/√3  => (1)

    RHS:

    (tan60 - tan30) / (1+tan60tan30)

    = (√3 - 1/√3) / [1 + {√3*1/√3}]

    =[(1/√3)(3-1)] / [1+1] = [2/√3]/(2) = 1/√3 => (2)

    From (1) and (2)

    LHS = RHS

    AJM

  5. A = 60 & B = 30

    tan(A - B) = tan (60 -30) = tan 30 = 1/sqrt(3)

    (tan A - tan B)/(1 + tan A.tan B)

    = (tan 60 - tan 30)/(1 + tan 60.tan 30)

    = {sqrt(3) - 1/sqrt(3)}/{1 + sqrt(3).1/sqrt(3)}

    = {(3 - 1)/sqrt(3)}/(1 + 1)

    = 2/sqrt(3) x 1/2

    = 1/ sqrt(3)

    Therefore, tan (A - B) = (tan A - tan B)/(1 + tan A.tan B)

    so, This is varified.

Question Stats

Latest activity: earlier.
This question has 5 answers.

BECOME A GUIDE

Share your knowledge and help people by answering questions.
Unanswered Questions