Question:

Triognometric identities?

by Guest55834  |  earlier

0 LIKES UnLike

prove the following identities

3- 6 cos^2x

----------------- = 3(sin x +cos x)

sin x - cos x

 Tags:

   Report

3 ANSWERS


  1. L.H.S.=

    3(1-2cos^2x)/(sinx-cosx)=

    3cos2x(cosx+sinx)/(cos^2x-sin^2x)=

    3cos2x(cosx+sinx)/cos2x)=

    3(sinx+cosx)=

    R.H.S.


  2. LHS = (3 - 3 cos^2 x- 3 cos^2 x ) / (sin x - cos x)

    ={ 3(1-cos^2 x) - 3 cos ^2 x } / (sin x - cos x)

    = (3 sin ^2 x - 3 cos ^2 x ) / (sin x - cos x)

    = 3(sin x + cos x ) (sin x - cos x) / sin x -cos x)

    = 3(sin x + cos x)

      

  3. take 3 common from numerator u get

    3(1-2cos^2x)          3cos2x

    ---------------------  =   ------------            

    sinx -  cosx           sinx  -  cosx

    using  cos2x=1-2cos^2x

    =  3(cosx-sinx)(cosx + sinx)

        ---------------------------------------

         sinx  - cosx

    so u get

        = 3(sinx + cosx)

                                

Question Stats

Latest activity: earlier.
This question has 3 answers.

BECOME A GUIDE

Share your knowledge and help people by answering questions.