Question:

Use the formulas for sin (A +- B) and cos (A +-B) to prove the double angle formulas for sin 2A and cos 2A?

by  |  earlier

0 LIKES UnLike

Formulas:

sin (A +-B) = sin (A) cos (B) +- sin (B) cos (A)

cos(A +-B) = cos(A) cos (B) +- sin (A) sin (B)

sin 2A = 2sin (A) cos (A)

cos 2A = 1 - sin^(2) (A)

 Tags:

   Report

5 ANSWERS


  1. i) To Prove: sin 2A = 2sin (A) cos (A)

    using formula

    sin (A +-B) = sin (A) cos (B) +- sin (B) cos (A)

    sin(2A)=sin (A + A) = sin (A) cos (A) + sin (A) cos (A)

    =>sin (2A) = 2sin(A) cos(A)

    hence proved

    (ii)To Prove: cos 2A = 1 - 2sin^(2) (A) (actually you have given this wrong)

    using formula

    cos(A +-B) = cos(A) cos (B) -+ sin (A) sin (B)

    cos(2A)=cos(A + A) = cos(A) cos (A) - sin (A) sin (A)

    cos (2A) = cos^(2) (A) - sin^(2) A

    using: sin^(2) A + cos^(2) A =1

    cos (2A) = (1 - sin^(2) A - sin^(2) A)

    = 1 - 2sin^(2) A

    hence proved!!


  2. sin 2A

    sin (A + A)

    sin A cos A + cos A sin A

    sin A cos A + sin A cos A

    2 sin A cos A

    cos 2A

    cos (A + A)

    cos A cos A - sin A sin A

    cos ² A - sin ² A

    1 - 2 sin ² A

  3.   hi  

    that 's true


  4. sin(2z)=sin(z)cos(z)+sin(z)cos(z)

    =2sin(z)cos(z)

    cos(z+z)=cos(z)cos(z)-sin(z)sin(z)

    =cos^2(z)-sin^2(z)

    =(1-sin^2(z))-sin^2(z)

    =1-2sin^2(z)

    only takes 2 mins  

  5. (i) Prove: sin 2A = 2sin (A) cos (A)

    sin (A +-B) = sin (A) cos (B) +- sin (B) cos (A)

    since we want 2A,

    sin (A + A) = sin (A) cos (A) + sin (A) cos (A)

    sin (2A) = 2sin(A)cos(A) as required

    (ii) prove: cos 2A = 1 - sin^(2) (A) < this double angle formula is wrong

    cos(A +-B) = cos(A) cos (B) -+ sin (A) sin (B) < u got this rule wrong.

    since we want 2A as usual

    cos(A + A) = cos(A) cos (A) - sin (A) sin (A)

    cos (2A) = cos^(2) (A) - sin^(2) A

    using: sin^(2) A + cos^(2) A =1

    cos (2A) = (1 - sin^(2) A - sin^(2) A)

                 = 1 - 2sin^(2) A

Question Stats

Latest activity: earlier.
This question has 5 answers.

BECOME A GUIDE

Share your knowledge and help people by answering questions.