Question:

What are Lipids?

by  |  earlier

0 LIKES UnLike

I will give a REALLY meaningful report on it tomorrow. What are they, where can I use them, where they come from, their components, etc. Anything about their classifications are fine also! Also, I need answers to questions that my teacher will probably ask, like:

**What if I dont eat anything with Lipids, will my body function properly?

**Explain Lipid more further

**<Insert possible difficult question here>

I really need it, so Thanks in advance!!! ^o^

 Tags:

   Report

5 ANSWERS


  1. check wikipedia http://en.wikipedia.org/wiki/Lipid

    you&#039;ll find more than you want


  2. Lipids are fats. They are composed of fatty acids. They are a major source of energy for body. Other functions of lipids in body are heat production, isolation and protection.

    Many vitamins are fat soluble and many functions of body depend on them. They are a major part of the cell membrane structure.

    If you totally eliminate lipids from your diet, you will have major vitamin deficiency which will cause many health problems.

    It is a little bit too late for starting researching for your report! Next time, make sure you are ready before the night of the day that it is due!

  3. Yahoo!My Yahoo!Mail      Make Y! your home pageYahoo! SearchSearch:Welcome, vinayak_bharath00...

    [Sign Out, My Account]Answers Home -Forum -Blog -Help

    Ask Answer Discover

    Search for questions:   Advanced My Profile

    Home &gt; Science &amp; Mathematics &gt; Medicine &gt; Open Question  aiyette Member since:

    June 17, 2008

    Total points:

    78 (Level 1)

    Add to My Contacts



    Block User



    Open QuestionShow me another »

    What are Lipids?

    I will give a REALLY meaningful report on it tomorrow. What are they, where can I use them, where they come from, their components, etc. Anything about their classifications are fine also! Also, I need answers to questions that my teacher will probably ask, like:

    **What if I dont eat anything with Lipids, will my body function properly?

    **Explain Lipid more further

    **&lt;Insert possible difficult question here&gt;

    I really need it, so Thanks in advance!!! ^o^

    42 minutes ago - 3 days left to answer.

    Additional Details

    22 minutes ago

    I need a SUMMARY, please, bacuse my teacher doesnt want looong boring reports :] But thanks for your answers!

    Answer this QuestionReport Abuse

    0 stars - mark this as Interesting! Who found this interesting?

    Be the first person to mark this question as interesting!

    Email

    Save

    Add to private Watchlist

    Save to My Web



    Add to My Yahoo!



    Add to Del.icio.us



    RSS

    Answers (3) Show:  All Answers Oldest to Newest Newest to Oldest Rated Highest to Lowest  

    by smarties Member since:

    September 28, 2006

    Total points:

    7773 (Level 5)

    Add to My Contacts



    Block User



    Lipids are fats. They are composed of fatty acids. They are a major source of energy for body. Other functions of lipids in body are heat production, isolation and protection.

    Many vitamins are fat soluble and many functions of body depend on them. They are a major part of the cell membrane structure.

    If you totally eliminate lipids from your diet, you will have major vitamin deficiency which will cause many health problems.

    It is a little bit too late for starting researching for your report! Next time, make sure you are ready before the night of the day that it is due!

    25 minutes ago

    0 Rating: Good Answer 0 Rating: Bad Answer Report Abuse Sorry, you must be Level 2 to rate

    by last d Member since:

    July 14, 2008

    Total points:

    142 (Level 1)

    Add to My Contacts



    Block User



    check wikipedia http://en.wikipedia.org/wiki/Lipid

    you&#039;ll find more than you want

    32 minutes ago

    0 Rating: Good Answer 0 Rating: Bad Answer Report Abuse Sorry, you must be Level 2 to rate

    by C N

    Member since:

    February 23, 2008

    Total points:

    17451 (Level 6)

    Badge Image:



    Contributing In:

    Newborn &amp; Baby

    Add to My Contacts



    Block User



    check it out

    http://en.wikipedia.org/wiki/Lipids

    ...

    &quot;&quot;Lipid

    From Wikipedia, the free encyclopedia

    (Redirected from Lipids)

    Jump to: navigation, search

    Some common lipids. At the top is oleic acid and cholesterol. In the middle is a triglyceride composed of oleoyl, stearoyl, and palmitoyl chains attached to a glycerol backbone. At the bottom is the common phospholipid phosphatidylcholine.

    Some common lipids. At the top is oleic acid and cholesterol. In the middle is a triglyceride composed of oleoyl, stearoyl, and palmitoyl chains attached to a glycerol backbone. At the bottom is the common phospholipid phosphatidylcholine.

    Lipids are broadly defined as any fat-soluble (lipophilic), naturally-occurring molecule, such as fats, oils, waxes, cholesterol, sterols, fat-soluble vitamins (such as vitamins A, D, E and K), monoglycerides, diglycerides, phospholipids, and others. The main biological functions of lipids include energy storage, acting as structural components of cell membranes, and participating as important signaling molecules.

    Although the term lipid is sometimes used as a synonym for fats, fats are a subgroup of lipids called triglycerides and should not be confused with the term fatty acid. Lipids also encompass molecules such as fatty acids and their derivatives (including tri-, di-, and monoglycerides and phospholipids), as well as other sterol-containing metabolites such as cholesterol. [1] The emulsion test is a crude method for determining the presence or absence of lipids in a given sample.

    Lipids are a diverse group of compounds that have many key biological functions, such as acting as structural components of cell membranes, serving as energy storage sources and participating in signaling pathways. Lipids may be broadly defined as hydrophobic or amphiphilic small molecules that originate entirely or in part from two distinct types of biochemical subunits or &quot;building blocks&quot;: ketoacyl and isoprene groups.[2] Using this approach, lipids may be divided into eight categories : fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, saccharolipids and polyketides (derived from condensation of ketoacyl subunits); and sterol lipids and prenol lipids (derived from condensation of isoprene subunits).

    Contents

    [hide]

    * 1 Categories of Lipids

    * 2 Biological Functions

    o 2.1 Membranes

    o 2.2 Energy storage and metabolism

    o 2.3 Signaling

    o 2.4 Other functions

    * 3 Nutrition and health

    * 4 References

    * 5 See also

    * 6 External links

    [edit] Categories of Lipids

    Examples of some lipids from various categories.

    Examples of some lipids from various categories.

    * Fatty acyls (including fatty acids) are a diverse group of molecules synthesized by chain-elongation of an acetyl-CoA primer with malonyl-CoA or methylmalonyl-CoA groups.[3][4] The fatty acyl structure represents the major lipid building block of complex lipids and therefore is one of the most fundamental categories of biological lipids. The carbon chain may be saturated or unsaturated, and may be attached to functional groups containing oxygen, halogens, nitrogen and sulfur. Examples of biologically interesting fatty acyls are the eicosanoids which are in turn derived from arachidonic acid which include prostaglandins, leukotrienes, and thromboxanes. Other major lipid classes in the fatty acyl category are the fatty esters and fatty amides. Fatty esters include important biochemical intermediates such as wax esters, fatty acyl thioester coenzyme A derivatives, fatty acyl thioester ACP derivatives and fatty acyl carnitines. The fatty amides include N-acyl ethanolamines such as anandamide.

    * Glycerolipids are composed mainly of mono-, di- and tri-substituted glycerols,[5] the most well-known being the fatty acid esters of glycerol (triacylglycerols), also known as triglycerides. these comprise the bulk of storage fat in animal tissues. Additional subclasses are represented by glycosylglycerols, which are characterized by the presence of one or more sugar residues attached to glycerol via a glycosidic linkage. Examples of structures in this category are the digalactosyldiacylglycerols found in plant membranes and seminolipid from mammalian spermatazoa.

    * Glycerophospholipids, also referred to as phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Glycerophospholipids[6] may be subdivided into distinct classes, based on the nature of the polar headgroup at the sn-3 position of the glycerol backbone in eukaryotes and eubacteria or the sn-1 position in the case of archaebacteria. Examples of glycerophospholipids found in biological membranes are phosphatidylcholine (also known as PC or GPCho, and lecithin), phosphatidylethanolamine (PE or GPEtn) and phosphatidylserine (PS or GPSer). In addition to serving as a primary component of cellular membranes and binding sites for intra- and intercellular proteins, some glycerophospholipids in eukaryotic cells, such as phosphatidylinositols and phosphatidic acids are either precursors of, or are themselves, membrane-derived second messengers. Typically one or both of these hydroxyl groups are acylated with long-chain fatty acids, but there are also alkyl-linked and 1Z-alkenyl-linked (plasmalogen) glycerophospholipids, as well as dialkylether variants in prokaryotes.

    * Sphingolipids are a complex family of compounds[7] that share a common structural feature, a sphingoid base backbone that is synthesized de novo from serine and a long-chain fatty acyl CoA, then converted into ceramides, phosphosphingolipids, glycosphingolipids and other species. The major sphingoid base of mammals is commonly referred to as sphingosine. Ceramides (N-acyl-sphingoid bases) are a major subclass of sphingoid base derivatives with an amide-linked fatty acid. The fatty acids are typically saturated or mono-unsaturated with chain lengths from 14 to 26 carbon atoms. The major phosphosphingolipids of mammals are sphingomyelins (ceramide phosphocholines), whereas insects contain mainly ceramide phosphoethanolamines and fungi have phytoceramidephosphoinositols and mannose containing headgroups. The Glycosphingolipids are a diverse family of molecules composed of one or more sugar residues linked via a glycosidic bond to the sphingoid base. Examples of these are the simple and complex glycosphingolipids such as cerebrosides and gangliosides.

    * Sterol lipids, such as cholesterol and its derivatives are an important component of membrane lipids,[8] along with the glycerophospholipids and sphingomyelins. The steroids, which also contain the same fused four-ring core structure, have different biological roles as hormones and signaling molecules. The C18 steroids include the estrogen family whereas the C19 steroids comprise the androgens such as testosterone and androsterone. The C21 subclass includes the progestogens as well as the glucocorticoids and mineralocorticoids. The secosteroids, comprising various forms of vitamin D, are characterized by cleavage of the B ring of the core structure. Other examples of sterols are the bile acids and their c

  4. simply called

    Fats

    Contains molecules C H O (Carbon Hydrogen &amp; Oxygen)

    (similar to polysaccharides, though they have more oxygen)

  5. check it out

    http://en.wikipedia.org/wiki/Lipids

    ...

    &quot;&quot;Lipid

    From Wikipedia, the free encyclopedia

      (Redirected from Lipids)

    Jump to: navigation, search

    Some common lipids. At the top is oleic acid and cholesterol. In the middle is a triglyceride composed of oleoyl, stearoyl, and palmitoyl chains attached to a glycerol backbone. At the bottom is the common phospholipid phosphatidylcholine.

    Some common lipids. At the top is oleic acid and cholesterol. In the middle is a triglyceride composed of oleoyl, stearoyl, and palmitoyl chains attached to a glycerol backbone. At the bottom is the common phospholipid phosphatidylcholine.

    Lipids are broadly defined as any fat-soluble (lipophilic), naturally-occurring molecule, such as fats, oils, waxes, cholesterol, sterols, fat-soluble vitamins (such as vitamins A, D, E and K), monoglycerides, diglycerides, phospholipids, and others. The main biological functions of lipids include energy storage, acting as structural components of cell membranes, and participating as important signaling molecules.

    Although the term lipid is sometimes used as a synonym for fats, fats are a subgroup of lipids called triglycerides and should not be confused with the term fatty acid. Lipids also encompass molecules such as fatty acids and their derivatives (including tri-, di-, and monoglycerides and phospholipids), as well as other sterol-containing metabolites such as cholesterol. [1] The emulsion test is a crude method for determining the presence or absence of lipids in a given sample.

    Lipids are a diverse group of compounds that have many key biological functions, such as acting as structural components of cell membranes, serving as energy storage sources and participating in signaling pathways. Lipids may be broadly defined as hydrophobic or amphiphilic small molecules that originate entirely or in part from two distinct types of biochemical subunits or &quot;building blocks&quot;: ketoacyl and isoprene groups.[2] Using this approach, lipids may be divided into eight categories : fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, saccharolipids and polyketides (derived from condensation of ketoacyl subunits); and sterol lipids and prenol lipids (derived from condensation of isoprene subunits).

    Contents

    [hide]

        * 1 Categories of Lipids

        * 2 Biological Functions

              o 2.1 Membranes

              o 2.2 Energy storage and metabolism

              o 2.3 Signaling

              o 2.4 Other functions

        * 3 Nutrition and health

        * 4 References

        * 5 See also

        * 6 External links

    [edit] Categories of Lipids

    Examples of some lipids from various categories.

    Examples of some lipids from various categories.

        * Fatty acyls (including fatty acids) are a diverse group of molecules synthesized by chain-elongation of an acetyl-CoA primer with malonyl-CoA or methylmalonyl-CoA groups.[3][4] The fatty acyl structure represents the major lipid building block of complex lipids and therefore is one of the most fundamental categories of biological lipids. The carbon chain may be saturated or unsaturated, and may be attached to functional groups containing oxygen, halogens, nitrogen and sulfur. Examples of biologically interesting fatty acyls are the eicosanoids which are in turn derived from arachidonic acid which include prostaglandins, leukotrienes, and thromboxanes. Other major lipid classes in the fatty acyl category are the fatty esters and fatty amides. Fatty esters include important biochemical intermediates such as wax esters, fatty acyl thioester coenzyme A derivatives, fatty acyl thioester ACP derivatives and fatty acyl carnitines. The fatty amides include N-acyl ethanolamines such as anandamide.

        * Glycerolipids are composed mainly of mono-, di- and tri-substituted glycerols,[5] the most well-known being the fatty acid esters of glycerol (triacylglycerols), also known as triglycerides. these comprise the bulk of storage fat in animal tissues. Additional subclasses are represented by glycosylglycerols, which are characterized by the presence of one or more sugar residues attached to glycerol via a glycosidic linkage. Examples of structures in this category are the digalactosyldiacylglycerols found in plant membranes and seminolipid from mammalian spermatazoa.

        * Glycerophospholipids, also referred to as phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Glycerophospholipids[6] may be subdivided into distinct classes, based on the nature of the polar headgroup at the sn-3 position of the glycerol backbone in eukaryotes and eubacteria or the sn-1 position in the case of archaebacteria. Examples of glycerophospholipids found in biological membranes are phosphatidylcholine (also known as PC or GPCho, and lecithin), phosphatidylethanolamine (PE or GPEtn) and phosphatidylserine (PS or GPSer). In addition to serving as a primary component of cellular membranes and binding sites for intra- and intercellular proteins, some glycerophospholipids in eukaryotic cells, such as phosphatidylinositols and phosphatidic acids are either precursors of, or are themselves, membrane-derived second messengers. Typically one or both of these hydroxyl groups are acylated with long-chain fatty acids, but there are also alkyl-linked and 1Z-alkenyl-linked (plasmalogen) glycerophospholipids, as well as dialkylether variants in prokaryotes.

        * Sphingolipids are a complex family of compounds[7] that share a common structural feature, a sphingoid base backbone that is synthesized de novo from serine and a long-chain fatty acyl CoA, then converted into ceramides, phosphosphingolipids, glycosphingolipids and other species. The major sphingoid base of mammals is commonly referred to as sphingosine. Ceramides (N-acyl-sphingoid bases) are a major subclass of sphingoid base derivatives with an amide-linked fatty acid. The fatty acids are typically saturated or mono-unsaturated with chain lengths from 14 to 26 carbon atoms. The major phosphosphingolipids of mammals are sphingomyelins (ceramide phosphocholines), whereas insects contain mainly ceramide phosphoethanolamines and fungi have phytoceramidephosphoinositols and mannose containing headgroups. The Glycosphingolipids are a diverse family of molecules composed of one or more sugar residues linked via a glycosidic bond to the sphingoid base. Examples of these are the simple and complex glycosphingolipids such as cerebrosides and gangliosides.

        * Sterol lipids, such as cholesterol and its derivatives are an important component of membrane lipids,[8] along with the glycerophospholipids and sphingomyelins. The steroids, which also contain the same fused four-ring core structure, have different biological roles as hormones and signaling molecules. The C18 steroids include the estrogen family whereas the C19 steroids comprise the androgens such as testosterone and androsterone. The C21 subclass includes the progestogens as well as the glucocorticoids and mineralocorticoids. The secosteroids, comprising various forms of vitamin D, are characterized by cleavage of the B ring of the core structure. Other examples of sterols are the bile acids and their conjugates,[9] which in mammals are oxidized derivatives of cholesterol and are synthesized in the liver.

    Figure 2: Structure of the saccharolipid Kdo2-Lipid A. Glucosamine residues in blue, Kdo residues in red, acyl chains in black and phosphate groups in green.

    Figure 2: Structure of the saccharolipid Kdo2-Lipid A. Glucosamine residues in blue, Kdo residues in red, acyl chains in black and phosphate groups in green.

        * Prenol lipids are synthesized from the 5-carbon precursors isopentenyl diphosphate and dimethylallyl diphosphate that are produced mainly via the mevalonic acid (MVA) pathway.[10] The simple isoprenoids (linear alcohols, diphosphates, etc.) are formed by the successive addition of C5 units, and are classified according to number of these terpene units. Structures containing greater than 40 carbons are known as polyterpenes. Carotenoids are important simple isoprenoids that function as anti-oxidants and as precursors of vitamin A. Another biologically important class of molecules is exemplified by the quinones and hydroquinones, which contain an isoprenoid tail attached to a quinonoid core of non-isoprenoid origin. Vitamin E and vitamin K, as well as the ubiquinones, are examples of this class. Bacteria synthesize polyprenols (called bactoprenols) in which the terminal isoprenoid unit attached to oxygen remains unsaturated, whereas in animal polyprenols (dolichols) the terminal isoprenoid is reduced.

        * Saccharolipids describe compounds in which fatty acids are linked directly to a sugar backbone, forming structures that are compatible with membrane bilayers. In the saccharolipids, a sugar substitutes for the glycerol backbone that is present in glycerolipids and glycerophospholipids. The most familiar saccharolipids are the acylated glucosamine precursors of the Lipid A component of the lipopolysaccharides in Gram-negative bacteria. Typical lipid A molecules are disaccharides of glucosamine, which are derivatized with as many as seven fatty-acyl chains. The minimal lipopolysaccharide required for growth in E. coli is Kdo2-Lipid A, a hexa-acylated disaccharide of glucosamine that is glycosylated with two 3-deoxy-D-manno-octulosonic acid (Kdo) residues.[11]

        * Polyketides are synthesized by polymerization of acetyl and propionyl subunits by classic enzymes as well as iterative and multimodular enzymes that share mechanistic features with the fatty acid synthases. They comprise a very large number of secondary metabolites and natural products from animal, plant, bacterial, fungal and marine sources, and have great structural diversity.[12] Many polyketides are cyclic molecules whose backbones are often further m
You're reading: What are Lipids?

Question Stats

Latest activity: earlier.
This question has 5 answers.

BECOME A GUIDE

Share your knowledge and help people by answering questions.