Question:

What are non conventional energy resources and their types?

by  |  earlier

0 LIKES UnLike

introduction,objectives,statistics photos,images

 Tags:

   Report

6 ANSWERS


  1. non conventional sources are those sources which are not commonly used but are efficient for conventional sources because they are less polluting and are easily available to us.

    exm.solar energy,wind energy etc.


  2. Hydro-electricity,Solar power,Wind power,Geo-thermal energy,Tydal energy these are renewable energy.Neucler,bio-diesel,,etc are non-renewable.These are all alternative energy when oil&coal reserves will be exhausted.These are referred as Non-conventional energy sources.

  3. TREEHUGGER.COM is the perfect website for your question! It's the coolest place ever where fellow greeners can share their ideas, concerns, and to get informed on the environment and what you can do to help save it!

  4. go thru:

    http://www.oas.org/dsd/publications/Unit...

  5. Sun, Wind, Biogas and Water energy.

  6. Renewable energy effectively utilizes natural resources such as sunlight, wind, tides and geothermal heat, which are naturally replenished. Renewable energy technologies range from solar power, wind power, and hydroelectricity to biomass and biofuels for transportation. About 13 percent of primary energy comes from renewables, with most of this coming from traditional biomass like wood-burning. Hydropower is the next largest source, providing 2-3%, and modern technologies like geothermal, wind, solar, and marine energy together produce less than 1% of total world energy demand.[1] The technical potential for their use is very large, exceeding all other readily available sources.[2]



    Renewable energy sources worldwide in 2005 (2004 for items marked * or **). Off-grid electric and ground source heat pumps not included. Source: REN21[3]Renewable energy technologies are sometimes criticised for being unreliable or unsightly, yet the market is growing for many forms of renewable energy. Wind power has a worldwide installed capacity of 74,223 MW and is widely used in several European countries and the USA.[4] The manufacturing output of the photovoltaics industry reached more than 2,000 MW per year in 2006,[5] and PV power plants are particularly popular in Germany.[6] Solar thermal power stations operate in the USA and Spain, and the largest of these is the 354 MW SEGS power plant in the Mojave Desert.[7] The world's largest geothermal power installation is The Geysers in California, with a rated capacity of 750 MW.[8] Brazil has one of the largest renewable energy programs in the world, involving production of ethanol fuel from sugar cane, and ethanol now provides 18 percent of the country's automotive fuel.[9] Ethanol fuel is also widely available in the USA.

    While there are many large-scale renewable energy projects, renewable technologies are also suited to small off-grid applications, sometimes in rural and remote areas, where energy is often crucial in human development.[10] Kenya has the world's highest household solar ownership rate with roughly 30,000 small (20-100 watt) solar power systems sold per year.[11]

    Climate change concerns coupled with high oil prices, peak oil and increasing government support are driving increasing renewable energy legislation, incentives and commercialization. EU leaders reached agreement in principle in March that 20 percent of the bloc's energy should be produced from renewable fuels by 2020, as part of its drive to cut emissions of carbon dioxide, blamed in part for global warming. [12] Investment capital flowing into renewable energy climbed from $80 billion in 2005 to a record $100 billion in 2006.[13] Some very large corporations such as BP, GE, Sharp, and Shell are investing in the renewable energy sector.[14][15]

    The U.S. renewable energy and energy efficiency industries created jobs for 8.5 million people in 2006, while generating more than a trillion dollars in sales, $100 billion in profits, and $150 billion in increased federal, state, and local government tax revenues, according to a new report from the American Solar Energy Society (ASES). The report notes that it's difficult to define the energy efficiency industry, but even focusing on the renewable energy industry, it found 196,000 people directly employed by the industry, a total of 452,000 jobs created, and revenues of $39.2 billion in 2006. [16]

    Wind power

    Main article: Wind power



    Offshore wind turbines near CopenhagenAirflows can be used to run wind turbines. Modern wind turbines range from around 600kW to up to 5 MW of rated power, although turbines, with rated output of 1.5-3 MW, have become the most common for commercial use; the power output of a turbine is a function of the cube of the wind speed, so as wind speed increases, power output increases dramatically.[20] Areas where winds are stronger and more constant, such as offshore and high altitude sites, are preferred locations for wind farms.

    Wind power is the fastest growing of the renewable energy technologies,[20] though it currently provides less than 0.5% of global energy.[3][1] Over the past decade, global installed maximum capacity increased from 2,500 MW in 1992 to just over 40,000 MW at the end of 2003, at an annual growth rate of near 30%.[20] As wind power has become more prominent and viable, several public schools are incorporating sustainable wind power into the energy grid of their school in order to cut power costs.[21] Due to the intermittency of wind resources, most deployed turbines in the EU produce electricity an average of 25% of the hours in a year (a capacity factor of 25%),[22] but under favourable wind regimes some reach 35% or higher. Capacity factors are a function of seasonal wind fluctuations and may be higher in winter. It would mean that a typical 5 MW turbine in the EU would have an average output of 1.7 MW.

    Globally, the long-term technical potential of wind energy is believed to be five times total current global energy production, or 40 times current electricity demand. This could require large amounts of land to be utilized for wind turbines, particularly in areas of higher wind resources. Offshore resources experience mean wind speeds of ~90% greater than that of land, so offshore resources could contribute substantially more energy.[23] This number could also increase with higher altitude ground-based or airborne wind turbines.[24]

    Wind strengths near the Earth's surface vary and thus cannot guarantee continuous power unless combined with other energy sources or storage systems. Some estimates suggest that 1,000 MW of conventional wind generation capacity can be relied on for just 333 MW of continuous power. While this might change as technology evolves, advocates have suggested incorporating wind power with other power sources, or the use of energy storage techniques, with this in mind. It is best used in the context of a system that has significant reserve capacity such as hydro, or reserve load, such as a desalination plant, to mitigate the economic effects of resource variability.

    Wind power is renewable and produces no greenhouse gases during operation, such as carbon dioxide and methane.

    [edit] Water power

    Main article: Hydropower

    Energy in water (in the form of motive energy or temperature differences) can be harnessed and used. Since water is about 800 times denser than air,[25][26] even a slow flowing stream of water, or moderate sea swell, can yield considerable amounts of energy.

    There are many forms of water energy:

    Hydroelectric energy is a term usually reserved for large-scale hydroelectric dams.

    Micro hydro systems are hydroelectric power installations that typically produce up to 100 kW of power. They are often used in water rich areas as a Remote Area Power Supply (RAPS). There are many of these installations around the world, including several delivering around 50 kW in the Solomon Islands.

    Wave power uses the energy in waves. The waves will usually make large pontoons go up and down in the water, leaving an area with reduced wave height in the "shadow". Wave power has now reached commercialization.

    Tidal power captures energy from the tides in a vertical direction. Tides come in, raise water levels in a basin, and tides roll out. Around low tide, the water in the basin is discharged through a turbine.

    Tidal stream power captures energy from the flow of tides, usually using underwater plant resembling a small wind turbine. Tidal stream power demonstration projects exist, and the first commercial prototype will be installed in Strangford Lough in September 2007.

    Ocean thermal energy conversion (OTEC) uses the temperature difference between the warmer surface of the ocean and the colder lower recesses. To this end, it employs a cyclic heat engine. OTEC has not been field-tested on a large scale.

    Deep lake water cooling, although not technically an energy generation method, can save a lot of energy in summer. It uses submerged pipes as a heat sink for climate control systems. Lake-bottom water is a year-round local constant of about 4 °C.

    Blue energy is the reverse of desalination. This form of energy is in research.

    [edit] Solar energy use

    Main article: Solar energy



    A photovoltaic (PV) module that is composed of multiple PV cells. Two or more interconnected PV modules create an array.In this context, "solar energy" refers to energy that is collected from sunlight. Solar energy can be applied in many ways, including to:

    Generate electricity using photovoltaic solar cells.

    Generate electricity using concentrated solar power.

    Generate electricity by heating trapped air which rotates turbines in a Solar updraft tower.

    Heat buildings, directly, through passive solar design.

    Heat foodstuffs, through solar ovens.

    Heat water or air for domestic hot water and space heating needs using solar-thermal panels.

    Heat and cool air through use of solar chimneys.

    Generate electricity in geosynchronous orbit using solar power satellites.

    [edit] Biofuel

    Main article: Biofuel

    Plants use photosynthesis to grow and produce biomass. Also known as biomatter, biomass can be used directly as fuel or to produce liquid biofuel. Agriculturally produced biomass fuels, such as biodiesel, ethanol and bagasse (often a by-product of sugar cane cultivation) can be burned in internal combustion engines or boilers. Typically biofuel is burned to release its stored chemical energy. Research into more efficient methods of converting biofuels and other fuels into electricity utilizing fuel cells is an area of very active work.

    [edit] Liquid biofuel



    Information on pump, California.Liquid biofuel is usually either a bioalcohol such as ethanol or a bio-oil such as biodiesel and straight vegetable oil. Biodiesel can be used in modern diesel vehicles with little or no modification to the engine and can be made from waste and virgin vegetable and animal oil and fats (lipids). Virgin vegetable oils can be used in modified diesel engines. In fact the Diesel engine was originally designed to run on vegetable oil rather than fossil fuel. A major benefit of biodiesel is lower emissions. The use of biodiesel reduces emission of carbon monoxide and other hydrocarbons by 20 to 40%. In some areas corn, cornstalks, sugarbeets, sugar cane, and switchgrasses are grown specifically to produce ethanol (also known as grain alcohol) a liquid which can be used in internal combustion engines and fuel cells. Ethanol is being phased into the current energy infrastructure. E85 is a fuel composed of 85% ethanol and 15% gasoline that is sold to consumers. Biobutanol is being developed as an alternative to bioethanol.

    In the future, there might be bio-synthetic liquid fuel available. It can be produced by the Fischer-Tropsch process, also called Biomass-To-Liquids (BTL).[27]

    [edit] Solid biomass



    Sugar cane residue can be used as a biofuelDirect use is usually in the form of combustible solids, either wood, the biogenic portion of municipal solid waste or combustible field crops. Field crops may be grown specifically for combustion or may be used for other purposes, and the processed plant waste then used for combustion. Most sorts of biomatter, including dried manure, can actually be burnt to heat water and to drive turbines.

    Sugar cane residue, wheat chaff, corn cobs and other plant matter can be, and are, burned quite successfully. The net carbon dioxide emissions that are added to the atmosphere by this process are only from the fossil fuel that is often currently consumed to plant, fertilize, harvest and transport the biomass.

    Processes to harvest biomass from short-rotation poplars and willows, and perennial grasses such as switchgrass, phalaris, and miscanthus, require less frequent cultivation and less nitrogen than from typical annual crops. Pelletizing miscanthus and co-firing it with coal for generating electricity is being studied and may be economically viable.[28] The higher heating value of cellulose is about 17.4 MJ/kg [1]. The estimated yield of ethanol from dry cellulose is about 0.2 kg of ethanol per kg of cellulose [2] (60 gal/ton). Since the higher heating value of ethanol is 29.7 MJ/kg of ethanol it would be 5.94 MJ/kg of the cellulose that it is made from. Thus the ethanol contains only about 1/3 as much energy as the cellulose that it was made from. Co-firing cellulose with coal would replace about three times as much fossil fuel as using the cellulose to make ethanol. The replaced coal would produce 0.0946 kg CO₂/MJ [3] while the replaced liquid fuel would produce only about 0.0733 kg CO₂/MJ so co-firing the cellulose with coal is about 3.8 times more effective at reducing CO₂ emissions than using it to make ethanol.

    Solid biomass can also be gasified, and used as described in the next section.

    [edit] Biogas

    Main articles: Biogas and Anaerobic digestion

    Biogas can easily be produced from current waste streams, such as: paper production, sugar production, sewage, animal waste and so forth. These various waste streams have to be slurried together and allowed to naturally ferment, producing methane gas. This can be done by converting current sewage plants into biogas plants. When a biogas plant has extracted all the methane it can, the remains are sometimes better suitable as fertilizer than the original biomass.

    Alternatively biogas can be produced via advanced waste processing systems such as mechanical biological treatment. These systems recover the recyclable elements of household waste and process the biodegradable fraction in anaerobic digesters.

    Renewable natural gas is a biogas which has been upgraded to a quality similar to natural gas. By upgrading the quality to that of natural gas, it becomes possible to distribute the gas to the mass market via gas grid.

    [edit] Geothermal energy

    Main article: Geothermal energy



    Krafla Geothermal Station in northeast IcelandGeothermal energy is energy obtained by tapping the heat of the earth itself, usually from kilometers deep into the Earth's crust. It is expensive to build a power station but operating costs are low resulting in low energy costs for suitable sites. Ultimately, this energy derives from heat in the Earth's core. The government of Iceland states: "It should be stressed that the geothermal resource is not strictly renewable in the same sense as the hydro resource." It estimates that Iceland's geothermal energy could provide 1700 MW for over 100 years, compared to the current production of 140 MW.[29] The International Energy Agency classifies geothermal power as renewable.[30]

    Three types of power plants are used to generate power from geothermal energy: dry steam, flash, and binary. Dry steam plants take steam out of fractures in the ground and use it to directly drive a turbine that spins a generator. Flash plants take hot water, usually at temperatures over 200 °C, out of the ground, and allows it to boil as it rises to the surface then separates the steam phase in steam/water separators and then runs the steam through a turbine. In binary plants, the hot water flows through heat exchangers, boiling an organic fluid that spins the turbine. The condensed steam and remaining geothermal fluid from all three types of plants are injected back into the hot rock to pick up more heat.

    The geothermal energy from the core of the Earth is closer to the surface in some areas than in others. Where hot underground steam or water can be tapped and brought to the surface it may be used to generate electricity. Such geothermal power sources exist in certain geologically unstable parts of the world such as Iceland, New Zealand, United States, the Philippines and Italy. The two most prominent areas for this in the United States are in the Yellowstone basin and in northern California. Iceland produced 170 MW geothermal power and heated 86% of all houses in the year 2000 through geothermal energy. Some 8000 MW of capacity is operational in total.

    There is also the potential to generate geothermal energy from hot dry rocks. Holes at least 3 km deep are drilled into the earth. Some of these holes pump water into the earth, while other holes pump hot water out. The heat resource consists of hot underground radiogenic granite rocks, which heat up when there is enough sediment between the rock and the earths surface. Several companies in Australia are exploring this technology.

Question Stats

Latest activity: earlier.
This question has 6 answers.

BECOME A GUIDE

Share your knowledge and help people by answering questions.
Unanswered Questions