Question:

What are stem cells for?

by  |  earlier

0 LIKES UnLike

send sites r information hostin stem cells

n its research..

 Tags:

   Report

7 ANSWERS


  1. The foundational components of all cells.

    Differentiation of which lead to many different types of cells.


  2. Check this out:

    www.stemcellresearch.org

    stemcells.nih.gov/info/basics

    www.religioustolerance.org/res_stem.ht...  

  3. http://stemcells.nih.gov/info/basics/

    http://www.explorestemcells.co.uk/Benefi...


  4. Stem cells are cells found in most, if not all, multi-cellular organisms. They are characterized by the ability to renew themselves through mitotic cell division and differentiating into a diverse range of specialized cell types. Research in the stem cell field grew out of findings by Canadian scientists Ernest A. McCulloch and James E. Till in the 1960s. The two broad types of mammalian stem cells are: embryonic stem cells that are found in blastocysts, and adult stem cells that are found in adult tissues. In a developing embryo, stem cells can differentiate into all of the specialized embryonic tissues. In adult organisms, stem cells and progenitor cells act as a repair system for the body, replenishing specialized cells, but also maintain the normal turnover of regenerative organs, such as blood, skin or intestinal tissues.

    As stem cells can be grown and transformed into specialized cells with characteristics consistent with cells of various tissues such as muscles or nerves through cell culture, their use in medical therapies has been proposed. In particular, embryonic cell lines, autologous embryonic stem cells generated through therapeutic cloning, and highly plastic adult stem cells from the umbilical cord blood or bone marrow are touted as promising candidates

  5. Stem cells are the primal cells of the body. The different cell types within the body are all derived from such cells- and hence the name. Stem cells are undifferentiated, "blank" cells that do not yet have a specific function. Characteristically, stem cells have a high capacity for self-renewal. This feature permits their continuous culture under laboratory conditions.

    Stem cells have the unique ability to differentiate into a variety of cells. When a stem cell divides, each new cell has the potential to either remain a stem cell or become another type of cell with a more specialized function - such as a muscle cell, a red blood cell or a nerve cell.

    Given the right environment, stem cells can give rise to a number of tissues that constitute the different organs. Also serving as a kind of repair system for the body, stem cells can divide repeatedly and then differentiate and replenish cells within the body. These unique characteristics are the reason why stem cells are considered a breakthrough in regenerative medicine. They have the potential for providing cells and tissues to treat various debilitating, life-threatening diseases.

    Stem cells can be derived from various sources such as the bone marrow, embryos obtained by in vitro fertilization, amniotic fluid and umbilical cord blood.


  6. Stem cells have the remarkable potential to develop into many different cell types in the body. Serving as a sort of repair system for the body, they can theoretically divide without limit to replenish other cells as long as the person or animal is still alive. When a stem cell divides, each new cell has the potential to either remain a stem cell or become another type of cell with a more specialized function, such as a muscle cell, a red blood cell, or a brain cell.

  7. Stem cells are unprogrammed cells in the human body that can be described as "shape shifters." These cells have the ability to change into other types of cells. Stem cells are at the center of a new field of science called regenerative medicine. Because stem cells can become bone, muscle, cartilage and other specialized types of cells, they have the potential to treat many diseases, including Parkinson's, Alzheimer's, diabetes and cancer. Eventually, they may also be used to regenerate organs, reducing the need for organ transplants and related surgeries.

    "Stem cells are like little kids who, when they grow up, can enter a variety of professions," Dr. Marc Hedrick of the UCLA School of Medicine says. "A child might become a fireman, a doctor or a plumber, depending on the influences in their life -- or environment. In the same way, these stem cells can become many tissues by making certain changes in their environment."

Question Stats

Latest activity: earlier.
This question has 7 answers.

BECOME A GUIDE

Share your knowledge and help people by answering questions.