Question:

What are the classifications of organic compounds and their important applications?

by  |  earlier

0 LIKES UnLike

What are the classifications of organic compounds and their important applications?

 Tags:

   Report

1 ANSWERS


  1. Description and nomenclature

    Classification is not possible without having a full description of the individual compounds. In contrast with inorganic chemistry, in which describing a chemical compound can be achieved by simply enumerating the chemical symbols of the elements present in the compound together with the number of these elements in the molecule, in organic chemistry the relative arrangement of the atoms within a molecule must be added for a full description.

    One way of describing the molecule is by drawing its structural formula. Because of molecular complexity, simplified systems of chemical notation have been developed. The latest version is the line-angle formula, which achieves simplicity without introducing ambiguity. In this system, the endpoints and intersections of each line represent one carbon, and hydrogens can either be notated or assumed to be present by implication. Some disadvantages of chemical notation are that they are not easily described by words and they are not easily printable. These problems have been addressed by describing molecular structures using organic nomenclature .

    Because of the difficulties arising from the very large number and variety of organic compounds, chemists realized early on that the establishment of an internationally accepted system of naming organic compounds was of paramount importance. The Geneva Nomenclature was born in 1892 as a result of a number of international meetings on the subject.

    It was also realized that as the family of organic compounds grew, the system would have to be expanded and modified. This task was ultimately taken on by the International Union on Pure and Applied Chemistry (IUPAC). Recognizing the fact that in the branch of biochemistry the complexity of organic structures increases, the IUPAC organization joined forces with the International Union of Biochemistry and Molecular Biology, IUBMB, to produce a list of joint recommendations on nomenclature.

    Later, as the numbers and complexities of organic molecules grew, new recommendations were made within IUPAC for simplification. The first such recommendation was presented in 1951 when a cyclic benzene structure was named a cyclophane. Later recommendations extended the method to the simplification of other complex cyclic structures, including heterocyclics, and named such structures phanes.

    For ordinary communication, to spare a tedious description, the official IUPAC naming recommendations are not always followed in practice except when it is necessary to give a concise definition to a compound, or when the IUPAC name is simpler (viz. ethanol versus ethyl alcohol). Otherwise the common or trivial name may be used, often derived from the source of the compound.

    In summary, organic substances are classified by their molecular structural arrangement and by what other atoms are present along with the chief (carbon) constituent in their makeup, whilst in a structural formula, hydrogen is implicitly assumed to occupy all free valences of an appropriate carbon atom which remain after accounting for branching, other element(s) and/or multiple bonding.

    Hydrocarbons and functional groups

    The family of carboxylic acids contains a carboxyl (-COOH) functional group. Acetic acid is an example.

    The family of carboxylic acids contains a carboxyl (-COOH) functional group. Acetic acid is an example.

    Classification normally starts with the hydrocarbons: compounds which contain only carbon and hydrogen. For sub-classes see below. Other elements present themselves in atomic configurations called functional groups which have decisive influence on the chemical and physical characteristics of the compound; thus those containing the same atomic formations have similar characteristics, which may be: miscibility with water, acidity/alkalinity, chemical reactivity, oxidation resistance, and others. Some functional groups are also radicals, similar to those in inorganic chemistry, defined as polar atomic configurations which pass during chemical reactions from one chemical compound into another without change.

    Some of the elements of the functional groups (O, S, N, halogens) may stand alone and the group name is not strictly appropriate, but because of their decisive effect on the way they modify the characteristics of the hydrocarbons in which they are present they are classed with the functional groups, and their specific effect on the properties lends excellent means for characterisation and classification.

    Referring to the hydrocarbon types below, many, if not all of the functional groups which are typically present within aliphatic compounds are also represented within the aromatic and alicyclic group of compounds, unless they are dehydrated, which would lead to non-reacting co-optional groups.

    Reference is made here again to the organic nomenclature, which shows an extensive (if not comprehensive) number of classes of compounds according to the presence of various functional groups, based on the IUPAC recommendations, but also some based on trivial names. Putting compounds in sub-classes becomes more difficult when more than one functional group is present.

    Two overarching chain type categories exist: Open Chain aliphatic compounds and Closed Chain cyclic compounds. Those in which both open chain and cyclic parts are present are normally classed with the latter.

    Aliphatic compounds

    The aliphatic hydrocarbons are subdivided into three groups, homologous series according to their state of saturation: paraffins alkanes without any double or triple bonds, olefins alkenes with double bonds, which can be mono-olefins with a single double bond, di-olefins, or di-enes with two, or poly-olefins with more. The third group with a triple bond is named after the name of the shortest member of the homologue series as the acetylenes alkynes. The rest of the group is classed according to the functional groups present.

    From another aspect aliphatics can be straight chain or branched chain compounds, and the degree of branching also affects characteristics, like octane number or cetane number in petroleum chemistry.

    Aromatic and alicyclic compounds

    Benzene is one of the best-known aromatic compounds as it is one of the simplest aromatics.

    Benzene is one of the best-known aromatic compounds as it is one of the simplest aromatics.

    Cyclic compounds can, again, be saturated or unsaturated. Because of the bonding angle of carbon, the most stable configurations contain six carbon atoms, but while rings with five carbon atoms are also frequent, others are rarer. The cyclic hydrocarbons divide into alicyclics and aromatics (also called arenes).

    Of the alicyclic compounds the cycloalkanes do not contain multiple bonds, whilst the cycloalkenes and the cycloalkynes do. Typically this latter type only exists in the form of large rings, called macrocycles. The simplest member of the cycloalkane family is the three-membered cyclopropane.

    Aromatic hydrocarbons contain conjugated double bonds. One of the simplest examples of these is benzene, the structure of which was formulated by Kekulé who first proposed the delocalization or resonance principle for explaining its structure. For "conventional" cyclic compounds, aromaticity is conferred by the presence of 4n + 2 delocalized pi electrons, where n is an integer. Particular instability (antiaromaticity) is conferred by the presence of 4n conjugated pi electrons.

    The characteristics of the cyclic hydrocarbons are again altered if heteroatoms are present, which can exist as either substituents attached externally to the ring (exocyclic) or as a member of the ring itself (endocyclic). In the case of the latter, the ring is termed a heterocycle. Pyridine and furan are examples of aromatic heterocycles while piperidine and tetrahydrofuran are the corresponding alicyclic heterocycles. The heteroatom of heterocyclic molecules is generally oxygen, sulfur, or nitrogen, with the latter being particularly common in biochemical systems.

    Rings can fuse with other rings on an edge to give polycyclic compounds. The purine nucleoside bases are notable polycyclic aromatic heterocycles. Rings can also fuse on a "corner" such that one atom (almost always carbon) has two bonds going to one ring and two to another. Such compounds are termed spiro and are important in a number of natural products.

    Polymers

    This swimming board is made of polystyrene, an example of a polymer

    One important property of carbon in organic chemistry is that it can form certain compounds, the individual molecules of which are capable of attaching themselves to one another, thereby forming a chain or a network. The process is called polymerization and the chains or networks polymers, while the source compound is a monomer. Two main groups of polymers exist: those artificially manufactured are referred to as industrial polymers [4] or synthetic polymers and those naturally occurring as biopolymers.

    Since the invention of the first artificial polymer, bakelite, the family has quickly grown with the invention of others. Common synthetic organic polymers are polyethylene or polythene, polypropylene, nylon, teflon or PTFE, polystyrene, polyesters, polymethylmethacrylate (commonly known as perspex or plexiglas) polyvinylchloride or PVC, and polyisobutylene an important artificial or synthetic rubber also the polymerised butadiene, a rubber component.

    The examples are generic terms, and many varieties of each of these may exist, with their physical characteristics fine tuned for a specific use. Changing the conditions of polymerisation changes the chemical composition of the product by altering chain length, or branching, or the tacticity. With a single monomer as a start the product is a homopolymer. Further, secondary component(s) may be added to create a heteropolymer (co-polymer) and the degree of clustering of the different components can also be controlled. Physical characteristics, such as hardness, density, mechanical or tensile strength, abrasion resistance, heat resistance, transparency, colour, etc. will depend on the final composition.

    Biomolecules

    Maitotoxin, a complex organic biological toxin.

    Biomolecular chemistry is a major category within organic chemistry which is frequently studied by biochemists. Many complex multi-functional group molecules are important in living organisms. Some are long-chain biopolymers, and these include proteins, DNA, RNA and the polysaccharides such as starches in animals and celluloses in plants. The other main classes are amino acids (monomer building blocks of proteins), carbohydrates (which includes the polysaccharides), the nucleic acids (which include DNA and RNA as polymers), and the lipids. In addition, animal biochemistry contains many small molecule intermediates which assist in energy production through the Krebs cycle, and produces isoprene, the most common hydrocarbon in animals. Isoprenes in animals form the important steroid structural (cholesterol) and steroid hormone compounds; and in plants form terpenes, terpenoids, some alkaloids, and a unique set of structural hydrocarbons called biopolymer polyisoprenoids present in latex sap which is the basis for making rubber.

    Buckyballs

    Buckminsterfullerenes, also known as Buckyballs, are amongst the most fascinating molecules engineered by organic chemists to date. Their spherical structure manifests many electronic properties and new research in the synonymous carbon nanotubes is fascinating.

    Fullerenes are rather oddly classed with organic chemistry as they do not fit the definition. However, it seems, that the classification is justified by the fact that they are a diversion for organic chemists.

    Others

    Organic compounds containing bonds of carbon to nitrogen, oxygen and the halogens are not normally grouped separately. Others are sometimes put into major groups within organic chemistry and discussed under titles such as organosulfur chemistry, organometallic chemistry, organophosphorus chemistry and organosilicon chemistry.

Question Stats

Latest activity: earlier.
This question has 1 answers.

BECOME A GUIDE

Share your knowledge and help people by answering questions.