Question:

What are we going to discover Dark Matter to be?

by  |  earlier

0 LIKES UnLike

We know from reasoning that the universe does not have enough matter in it to account for the stability of some of its structures. Like wheeling galaxies, such as our own, which ought to fly apart as they rotate, but they never do. Neither do groups of galaxies, rotating, something fails the smell test.

 Tags:

   Report

2 ANSWERS


  1. We are going to discover that we have no clue what gravity is.


  2. In physics and cosmology, dark matter is matter that does not interact with the electromagnetic force, but whose presence can be inferred from gravitational effects on visible matter. According to present observations of structures larger than galaxies, as well as Big Bang cosmology, dark matter accounts for the vast majority of mass in the observable universe. The observed phenomena which imply the presence of dark matter include the rotational speeds of galaxies, orbital velocities of galaxies in clusters, gravitational lensing of background objects by galaxy clusters such as the Bullet cluster, and the temperature distribution of hot gas in galaxies and clusters of galaxies. Dark matter also plays a central role in structure formation and galaxy evolution, and has measurable effects on the anisotropy of the cosmic microwave background. All these lines of evidence suggest that galaxies, clusters of galaxies, and the universe as a whole contain far more matter than that which interacts with electromagnetic radiation: the remainder is called the "dark matter component."

    The dark matter component has vastly more mass than the "visible" component of the universe. At present, the density of ordinary baryons and radiation in the universe is estimated to be equivalent to about one hydrogen atom per cubic meter of space. Only about 4 percent of the total energy density in the universe (as inferred from gravitational effects) can be seen directly. About 22 percent is thought to be composed of dark matter. The remaining 74 percent  is thought to consist of dark energy, an even stranger component, distributed diffusely in space. Some hard-to-detect baryonic matter makes a contribution to dark matter but constitutes only a small portion. Determining the nature of this missing mass is one of the most important problems in modern cosmology and particle physics. It has been noted that the names "dark matter" and "dark energy" serve mainly as expressions of human ignorance, much as the marking of early maps with "terra incognita."

    In physical cosmology, dark energy is the form of energy that permeates all of space and tends to increase the rate of expansion of the universe. Assuming the existence of dark energy is the most popular way to explain recent observations that the universe appears to be expanding at an accelerating rate. In the standard model of cosmology, dark energy currently accounts for 73 percent of the total mass-energy of the universe.

    Two proposed forms for dark energy are the cosmological constant, a constant energy density filling space homogeneously, and scalar fields such as quintessence or moduli, dynamic quantities whose energy density can vary in time and space. Contributions from scalar fields that are constant in space, are usually also included in the cosmological constant. The cosmological constant is physically equivalent to vacuum energy. Scalar fields which do change in space can be difficult to distinguish from a cosmological constant, because the change may be extremely slow.

    High-precision measurements of the expansion of the universe are required to understand how the expansion rate changes over time. In general relativity, the evolution of the expansion rate is parameterized by the cosmological equation of state. Measuring the equation of state of dark energy is one of the biggest efforts in observational cosmology today.

    Adding the cosmological constant to cosmology's standard FLRW metric leads to the Lambda-CDM model, which has been referred to as the "standard model" of cosmology because of its precise agreement with observations. Dark energy has been used as a crucial ingredient in a recent attempt to formulate a cyclic model for the universe.

    Hot dark matter consists of particles that travel with relativistic velocities. One kind of hot dark matter is known, the neutrino. Neutrinos have a very small mass, do not interact via either the electromagnetic or the strong nuclear force and are therefore very difficult to detect. This is what makes them appealing as dark matter. However, bounds on neutrinos indicate that ordinary neutrinos make only a small contribution to the density of dark matter.

    Hot dark matter cannot explain how individual galaxies formed from the Big Bang. The microwave background radiation as measured by the COBE and WMAP satellites, while incredibly smooth, indicates that matter has clumped on very small scales. Fast moving particles, however, cannot clump together on such small scales and, in fact, suppress the clumping of other matter. Hot dark matter, while it certainly exists in our universe in the form of neutrinos, is therefore only part of the story.

    The Concordance Model requires that, to explain structure in the universe, it is necessary to invoke cold (non-relativistic) dark matter. Large masses, like galaxy-sized black holes can be ruled out on the basis of gravitational lensing data. Possibilities involving normal baryonic matter include brown dwarfs or perhaps small, dense chunks of heavy elements; such objects are known as massive compact halo objects, or "MACHOs". However, studies of big bang nucleosynthesis have convinced most scientists that baryonic matter such as MACHOs cannot be more than a small fraction of the total dark matter.

    At present, the most common view is that dark matter is primarily non-baryonic, made of one or more elementary particles other than the usual electrons, protons, neutrons, and known neutrinos. The most commonly proposed particles are axions, sterile neutrinos, and WIMPs (Weakly Interacting Massive Particles, including neutralinos). None of these are part of the standard model of particle physics, but they can arise in extensions to the standard model. Many supersymmetric models naturally give rise to stable WIMPs in the form of neutralinos. Heavy, sterile neutrinos exist in extensions to the standard model that explain the small neutrino mass through the seesaw mechanism.

Question Stats

Latest activity: earlier.
This question has 2 answers.

BECOME A GUIDE

Share your knowledge and help people by answering questions.