Question:

What is 3[f(x + 2)] if f(x) = x^3 + 2x^2 - 4?

by  |  earlier

0 LIKES UnLike

What is 3[f(x + 2)] if f(x) = x^3 + 2x^2 - 4?

 Tags:

   Report

4 ANSWERS


  1. x=4


  2. What is 3[f(x + 2)] if f(x) = x^3 + 2x^2 - 4?

    (1) apply this given f(x + 2) in term of x into equation:

          = (x+2)^3 + 2(x+2)^2 - 4

    (2) Expand the terms by special products first; then, multiply the constant/coefficient of 3. You will get the answer. 3 [(x+2)^3 + 2(x+2)^2 - 4]

    Here is how:

    = 3[(x^3+3x^2(2)+3x(2)^2+8) + 2(x^2+4x+4)-4]

    = 3 [ x^3+6x^2+12x+8 + 2x^2+8x+8-4]

    = [3x^3+18x^2+36x+24 + 6x^2+24x+12]

    = 3x^3+24x^2+60x+36

    Hope it helps.

    W.


  3. first, substitute x = x+2 into the original equation of f(x):

    f(x+2) = (x+2)^3 + 2(x+2)^2 - 4

    expand this expand and combine like terms:

    = (x+2)(x+2)(x+2) + 2(x+2)(x+2) - 4 = x^3 + 6x^2 + 12x +8 + 2(x^2 + 4x+ 4) - 4 = x^3 + 6x^2 + 12x +8 + 2x^2 + 8x+ 8 - 4 = x^3 + 8x^2 + 20x +12

    finally, multiply the entire f(x+2) by 3 to get the final result:

    3[f(x+2)] = 3[x^3 + 8x^2 + 20x +12] = 3x^3 + 24x^2 + 60x + 36

  4. note

    3[f(x + 2)] if f(x) = x^3 + 2x^2 - 4

    f(x + 2) = (x + 2)^3 + 2(x + 2)^2 - 4

    so

    3[f(x + 2)] =

    3[(x + 2)^3 + 2(x + 2)^2 - 4] =

    3[x^3 + 4x^2 + 8x + 8 + 2(x^2 + 2x + 4) - 4] =

    3[x^3 + 4x^2 + 8x + 8 + 2x^2 + 4x + 8 - 4] =

    3[x^3 + 6x^2 + 12x + 12] =

    3x^3 + 18x^2 + 36x + 36

Question Stats

Latest activity: earlier.
This question has 4 answers.

BECOME A GUIDE

Share your knowledge and help people by answering questions.