Question:

What is liquid chromatograph?

by  |  earlier

0 LIKES UnLike

how do high liquid chromatograph works, how does analyses its sample.

 Tags:

   Report

2 ANSWERS


  1. The long answer you've got probably answers everything. But to be short. Liquid chromatography works by separating different molecules by letting them pass through something thats relatively dense and have a large surface area and ideally does not react with the molecules. Such as a column filled with small plastic balls. Since it takes different time for different molecules to pass trough the collumn different molecules will get separated with time. You can than determine when the desired substance exits by meassuring it's electrical resistance and/or it's opacity for light at a particular wavelenght.


  2. High-performance liquid chromatography (or High pressure liquid chromatography, HPLC) is a form of column chromatography used frequently in biochemistry and analytical chemistry to separate, identify, and quantify compounds. HPLC utilizes a column that holds chromatographic packing material (stationary phase), a pump that moves the mobile phase(s) through the column, and a detector that shows the retention times of the molecules. Retention time varies depending on the interactions between the stationary phase, molecules being analyzed, and the solvent(s) used.

    The sample to be analyzed is introduced in small volume to the stream of mobile phase and is retarded by specific chemical or physical interactions with the stationary phase as it traverses the length of the column. The amount of retardation depends on the nature of the analyte, stationary phase and mobile phase composition. The time at which a specific analyte elutes (comes out of the end of the column) is called the retention time and is considered a reasonably unique identifying characteristic of a given analyte. The use of pressure increases the linear velocity (speed) giving the components less time to diffuse within the column, leading to improved resolution in the resulting chromatogram. Common solvents used include any miscible combinations of water or various organic liquids (the most common are methanol and acetonitrile). Water may contain buffers or salts to assist in the separation of the analyte components, or compounds such as Trifluoroacetic acid which acts as an ion pairing agent.

    A further refinement to HPLC has been to vary the mobile phase composition during the analysis, this is known as gradient elution. A normal gradient for reversed phase chromatography might start at 5 % methanol and progress linearly to 50 % methanol over 25 minutes, depending on how hydrophobic the analyte is. The gradient separates the analyte mixtures as a function of the affinity of the analyte for the current mobile phase composition relative to the stationary phase. This partitioning process is similar to that which occurs during a liquid-liquid extraction but is continuous, not step-wise. In this example, using a water/methanol gradient, the more hydrophobic components will elute (come off the column) under conditions of relatively high methanol (which is hydrophobic); whereas the more hydrophilic compounds will elute under conditions of relatively low methanol/high water. The choice of solvents, additives and gradient depend on the nature of the stationary phase and the analyte. Often a series of tests are performed on the analyte and a number of generic runs may be processed in order to find the optimum HPLC method for the analyte - the method which gives the best separation of peaks.

    Normal phase chromatography

    Also known Normal phase HPLC (NP-HPLC), this method separates analytes based on polarity; it was the first kind of HPLC chemists developed. NP-HPLC uses a polar stationary phase and a non-polar mobile phase, and works effectively for relatively polar analytes. The polar analyte associates with and is retained by the polar stationary phase. Adsorption strengths increase with increased analyte polarity, and the interaction between the polar analyte and the polar stationary phase (relative to the mobile phase) increases the elution time. The interaction strength not only depends on the functional groups in the analyte molecule, but also on steric factors. The effect of sterics on interaction strength allows this method to resolve (separate) structural isomers.

    Use of more polar solvents in the mobile phase will decrease the retention time of the analytes while more hydrophobic solvents tend to increase retention times. Very polar solvents in a mixture tend to deactivate the column by occupying the stationary phase surface. This is somewhat particular to normal phase because it is most purely an adsorptive mechanism (the interactions are with a hard surface rather than a soft layer on a surface).

    NP-HPLC had fallen out of favor in the 1970's with the development of reversed-phase HPLC because of a lack of reproducibility of retention times as water or protic organic solvents changed the hydration state of the silica or alumina chromatographic media. Recently it has become useful again with the development of HILIC bonded phases which utilize a partition mechanism which provides reproducibility.

    Reversed phase chromatography

    Reversed phase HPLC (RP-HPLC or RPC) has a non-polar stationary phase and an aqueous, moderately polar mobile phase. One common stationary phase is a silica which has been treated with RMe2SiCl, where R is a straight chain alkyl group such as C18H37 or C8H17. With these stationary phases, retention time is longer for molecules which are more non-polar, while polar molecules elute more readily. An investigator can also increase retention time by adding a polar solvent to the mobile phase, or decrease retention time by adding a more hydrophobic solvent. Reversed phase chromatography (RPC) is so commonly used that it is not uncommon for it to be incorrectly referred to as "HPLC" without further specification. The pharmaceutical industry regularly employs RPC to qualify drugs before their release.

    RPC operates on the principle of hydrophobic interactions, which result from repulsive forces between a polar eluent, the relatively non-polar analyte, and the non-polar stationary phase. The binding of the analyte to the stationary phase is proportional to the contact surface area around the non-polar segment of the analyte molecule upon association with the ligand in the aqueous eluent. This solvophobic effect is dominated by the force of water for "cavity-reduction" around the analyte and the C18-chain versus the complex of both. The energy released in this process is proportional to the surface tension of the eluent (water: 7.3 × 10-6 J/cm², methanol: 2.2 × 10-6 J/cm²) and to the hydrophobic surface of the analyte and the ligand respectively. The retention can be decreased by adding less-polar solvent (MeOH, ACN) into the mobile phase to reduce the surface tension of water. Gradient elution uses this effect by automatically changing the polarity of the mobile phase during the course of the analysis.

    Structural properties of the analyte molecule play an important role in its retention characteristics. In general, an analyte with a larger hydrophobic surface area (C-H, C-C, and generally non-polar atomic bonds, such as S-S and others) results in a longer retention time because it increases the molecule's non-polar surface area, which is non-interacting with the water structure. On the other hand, polar groups, such as -OH, -NH2, COO- or -NH3+ reduce retention as they are well integrated into water. Very large molecules, however, can result in an incomplete interaction between the large analyte surface and the ligands alkyl chains and can have problems entering the pores of the stationary phase.

    Retention time increases with hydrophobic - non-polar - surface area. Branched chain compounds elute more rapidly than their corresponding linear isomers because the overall surface area is decreased. Similarly organic compounds with single C-C-bonds elute later than the ones with a C=C or C-C-triple bond, as the double or triple bond is shorter than a single C-C-bond.

    Aside from mobile phase surface tension (organizational strength in eluent structure), other mobile phase modifiers can affect analyte retention. For example, the addition of inorganic salts causes a moderate linear increase in the surface tension of aqueous solutions (ca. 1.5 × 10-7 J/cm² per Mol for NaCl, 2.5 × 10-7 J/cm² per Mol for (NH4)2SO4), and because the entropy of the analyte-solvent interface is controlled by surface tension, the addition of salts tend to increase the retention time. This technique is used for mild separation and recovery of proteins and protection of their biological activity in protein analysis (hydrophobic interaction chromatography, HIC).

    Another important component is the influence of the pH since this can change the hydrophobicity of the analyte. For this reason most methods use a buffering agent, such as sodium phosphate, to control the pH. A volatile organic acid such as formic acid or most commonly trifluoroacetic acid is often added to the mobile phase, if mass spectrometry is applied to the eluent fractions. The buffers serve multiple purposes: they control pH, neutralize the charge on any residual exposed silica on the stationary phase and act as ion pairing agents to neutralize charge on the analyte. The effect varies depending on use but generally improve the chromatography.

    Reversed phase columns are quite difficult to damage compared with normal silica columns, however, many reversed phase columns consist of alkyl derivatized silica particles and should never be used with aqueous bases as these will destroy the underlying silica particle. They can be used with aqueous acid, but the column should not be exposed to the acid for too long, as it can corrode the metal parts of the HPLC equipment. The metal content of HPLC columns must be kept low if the best possible ability to separate substances is to be retained. A good test for the metal content of a column is to inject a sample which is a mixture of 2,2'- and 4,4'- bipyridine. Because the 2,2'-bipy can chelate the metal, the shape of the peak for the 2,2'-bipy will be distorted (tailed) when metal ions are present on the surface of the silica.

    Size exclusion chromatography

    Size exclusion chromatography (SEC), also known as gel permeation chromatography or gel filtration chromatography, separates particles on the basis of size. It is generally a low resolution chromatography and thus it is often reserved for the final, "polishing" step of a purification. It is also useful for deter

Question Stats

Latest activity: earlier.
This question has 2 answers.

BECOME A GUIDE

Share your knowledge and help people by answering questions.