Question:

Where does the ionosphere receive its charge?

by  |  earlier

0 LIKES UnLike

or energy for lack of a better word. Details please.

 Tags:

   Report

3 ANSWERS


  1. The ionosphere is the uppermost part of the atmosphere, distinguished because it is ionized by solar radiation. It plays an important part in atmospheric electricity and forms the inner edge of the magnetosphere. It has practical importance because, among other functions, it influences radio propagation to distant places on the Earth. It is located in the Thermosphere.

    When the sun is active, strong solar flares can occur that will hit the Earth with hard X-rays on the sunlit side of the Earth. They will penetrate to the D-region, release electrons which will rapidly increase absorption causing a High Frequency (3-30 MHz) radio blackout. During this time Very Low Frequency (3 - 30 kHz) signals will become reflected by the D layer instead of the E layer, where the increased atmospheric density will usually increase the absorption of the wave, and thus dampen it. As soon as the X-rays end, the sudden ionospheric disturbance (SID) or radio black-out ends as the electrons in the D-region recombine rapidly and signal strengths return to normal.

    Associated with solar flares is a release of high-energy protons. These particles can hit the Earth within 15 minutes to 2 hours of the solar flare. The protons spiral around and down the magnetic field lines of the Earth and penetrate into the atmosphere near the magnetic poles increasing the ionization of the D and E layers. PCA's typically last anywhere from about an hour to several days, with an average of around 24 to 36 hours.

    Solar radiation, acting on the different compositions of the atmosphere with height, generates layers of ionization:

    The D layer is the innermost layer, 50 km to 90 km above the surface of the Earth. Ionization here is due to Lyman series-alpha hydrogen radiation at a wavelength of 121.5 nanometre (nm) ionizing nitric oxide (NO). In addition, when the sun is active with 50 or more sunspots, hard X-rays (wavelength < 1 nm) ionize the air (N2, O2). During the night cosmic rays produce a residual amount of ionization. Recombination is high in the D layer, thus the net ionization effect is very low and as a result high-frequency (HF) radio waves aren't reflected by the D layer. The frequency of collision between electrons and other particles in this region during the day is about 10 million collisions per second. The D layer is mainly responsible for absorption of HF radio waves, particularly at 10 MHz and below, with progressively smaller absorption as the frequency gets higher. The absorption is small at night and greatest about midday. The layer reduces greatly after sunset, but remains due to galactic cosmic rays. A common example of the D layer in action is the disappearance of distant AM broadcast band stations in the daytime.

    During solar proton events, ionization can reach unusually high levels in the D-region over the high and polar latitudes. Such events are known as Polar Cap Absorption (or PCA) events, because the increased ionization significantly enhances the absorption of radio signals passing through the region. In fact, absorption levels can increase by many tens of dB during intense events, which is enough to absorb most (if not all) transpolar HF radio signal transmissions. Such events typically last less than 24 to 48 hours.

    The E layer is the middle layer, 90 km to 120 km above the surface of the Earth. Ionization is due to soft X-ray (1-10 nm) and far ultraviolet (UV) solar radiation ionization of molecular oxygen (O2). This layer can only reflect radio waves having frequencies less than about 10 MHz. It has a negative effect on frequencies above 10 MHz due to its partial absorption of these waves. The vertical structure of the E layer is primarily determined by the competing effects of ionization and recombination. At night the E layer begins to disappear because the primary source of ionization is no longer present. This results in an increase in the height where the layer maximizes because recombination is faster in the lower layers. Diurnal changes in the high altitude neutral winds also plays a role. The increase in the height of the E layer maximum increases the range to which radio waves can travel by reflection from the layer.

    This region is also known as the Kennelly-Heaviside Layer layer or simply the Heaviside layer. Its existence was predicted in 1902 independently and almost simultaneously by the American electrical engineer Arthur Edwin Kennelly (1861-1939) and the British physicist Oliver Heaviside (1850-1925). However, it was not until 1924 that its existence was detected by Edward V. Appleton.

    The Es layer or sporadic E-layer. Sporadic E propagation is characterized by small clouds of intense ionization, which can support radio wave reflections from 25 – 225 MHz. Sporadic-E events may last for just a few minutes to several hours and make radio amateurs very excited, as propagation paths which are generally unreachable, can open up. There are multiple causes of sporadic-E that are still being pursued by researchers. This propagation occurs most frequently during the summer months with major occurrences during the summer, and minor occurrences during the winter. During the summer, this mode is popular due to its high signal levels. The skip distances are generally around 1000km (620 miles). VHF TV and FM broadcast DX'ers also get excited as their signals can be bounced back to earth by Es. Distances for short hop events can be as close as 500 miles or up to 1,400 (or more) for a long, single hop. Douple-hop reception over 2,000 miles is possible, too.

    The F layer or region, also known as the Appleton layer, is 120 km to 400 km above the surface of the Earth. It is the top most layer of the ionosphere. Here extreme ultraviolet (UV, 10–100 nm) solar radiation ionizes atomic oxygen. The F layer consists of one layer at night, but in the presence of sunlight (during the day), it divides into two layers, labeled F1 and F2. These F layers are responsible for most skywave propagation of radio waves, facilitating high frequency (HF, or shortwave) radio communications over long distances. They are thickest and most effective in refracting radio signals on the side of the earth facing the sun.


  2. The sun

    in the link, look especially at page 8, figure 2.7

  3. From the sun.

    The sun emits billions and billions of particles every second. This Solar Radiation travels to the Earth and hits the outer layer of our protective atmosphere. The colliding particles of the radiation and the ionosphere build up a charge. We can then see the charge as what we know as the Northern and Southern Lights because most of the particles are deflected to the north and south poles.

Question Stats

Latest activity: earlier.
This question has 3 answers.

BECOME A GUIDE

Share your knowledge and help people by answering questions.