0 LIKES LikeUnLike
∫ cosx / √(1+sin²x) dxlet t = sinxdt = cosx dx  →  dx = dt/cosx  →  cosx = dt/dx∫ cosx / √(1+sin²x) dx = ∫ [1/√(1+sin²x)] * cosx dx = ∫ [1/√(1+t²)] dt/dx dx = ∫ 1/√(1+t²) dtOk, my answer has to contain [ln]ln(1+t²)/2 + c = ln(1+sin²x)/2 + c = F(x)---------pi/2∫ cosx / √(1+sin²x) dx = F(pi/2) - F(0)0= ln(1+sin²[pi/2])/2 - ln(1+sin²[0])/2 + c - c= ln(1+1)/2 - ln(1+0)/2= ln(2)/2 - 0= ln(2)/2  {answer}--------HP50g GraphCalc evaluation: -ln(√2 - 1)---------alternatively?∫ 1/√(1+t²) dt = arctan(t) + c = arctan(sinx) + cover [0,pi/2] arctan(sinx) = pi/4=========integrate by parts a bit complex hereWhere is my error? please show steps
Tags:
Report (0) (0) | earlier
Latest activity: earlier. This question has 5 answers.