∫ x² / √(1 - 4x²) dx = {x√(1-4x²) + √(1-4x²)³ / 6x} / (-4)
According to GraphCalc it's wrong, and my graphing calculator can't give me the answer. What am I doing wrong?
∫ x² / √(1 - 4x²) dx
I want to integrate by parts
let u = x²  →  du = 2x dx
dv = (1 - 4x²)^(-1/2) dx  →  v = √(1-4x²) / -4x
∫ u dv = uv - ∫ v du
∫ x²/√(1 - 4x²) dx = (x²) * [√(1-4x²)]/(-4x) - ∫ [√(1-4x²)]/(-4x) 2x dx
∫ x²/√(1 - 4x²) dx = (x) * [√(1-4x²)]/(-4) + ½ ∫ √(1-4x²) dx
∫ x²/√(1 - 4x²) dx = (x) * [√(1-4x²)]/(-4) + ½ [(1-4x²)^(3/2)]/(-12x)
∫ x²/√(1 - 4x²) dx = (x) * [√(1-4x²)]/(-4) - [(1-4x²)^(3/2)]/(24x)
∫ x²/√(1 - 4x²) dx = {x√(1-4x²) + √(1-4x²)³ / 6x} / (-4)
-------
It becomes worse if
u = 1/√(1 - 4x²) , and
dv = x² dx
why have I made a mistake? I try to follow what I am taught, yet I still err
Tags: