Question:

∫ √[1 + cos(x)] dx : how do one integrate this?

by  |  earlier

0 LIKES UnLike

∫ √[1 + cos(x)] dx

this is not in the forms

1/(1 + x²), or 1/√[1 - x²]

so that I could use the trig identities I know

now I'm confused

pleas do show me the steps. thank you

 Tags:

   Report

3 ANSWERS


  1. The point is to use identities you don't know :-). Here's a link to a huge bunch of them.

    http://en.wikipedia.org/wiki/Trigonometr...

    ∫ √(1 + cos x) dx = I

    ∫ √((1 + cos x)/2) dx = l/√2

    ∫ cos (x/2) dx = I/√2

    x/2 = u

    dx/2 = du

    dx = 2 du

    2 ∫ cos u du = I/√2

    2 sin u + C = I/√2

    2√2 sin (x/2) + C = l

    ANS: 2√2 sin (x/2) + C = I


  2. ∫ √[1 + cos(x)] dx  = ????

    1+cos2(x/2) =2cos^2 (x/2)  

    (since we know 1+cos2x = 2cos^x  

    so = ∫ √[1 + cos(x)] dx  = √2  ÃƒÂ¢Ã‚ˆÂ« cos^2(x/2)] dx  

    = √2 [ sin(x/2)]/2  =  (sin(x/2)) / √2   answer

    good luck

  3. you always post interesting questions...!

    ∫ √(1 + cosx) dx =

    try the substitution cosx = u

    thus

    x = arccos u →

    dx = [- 1/√(1 - u²)] du

    thus, substituting, you get:

    ∫ √(1 + cosx) dx = ∫ √(1 + u) [- 1/√(1 - u²)] du =

    - ∫ [√(1 + u) /√(1 - u²)] du =

    factor the radicand in the denominator as a difference of squares:

    - ∫ {√(1 + u) /√[(1 + u)(1 - u)]} du =

    - ∫ {√(1 + u) /[√(1 + u)√(1 - u)]} du =

    √(1 + u) canceling out,

    - ∫ [ 1/√(1 - u)] du =

    that is the same as:

    ∫ [ (- du) / √(1 - u)]  =

    ∫ [ d(1 - u) / √(1 - u)]  =

    ∫ [(1 - u)^(-1/2)]  d(1 - u) =

    having both the function (1 - u) and its differential,

    {(1 - u)^[(-1/2)+1]}/[(-1/2)+1] + C =

    [(1 - u)^(1/2)]/(1/2) + C =

    2√(1 - u) + C

    that is, substituting back u = cosx:  

    ∫ √(1 + cosx) dx = 2√(1 - cosx) + C

    I hope it helps..

    (I'm pretty sure that this answer will get a thumb down....)

    Bye!

Question Stats

Latest activity: earlier.
This question has 3 answers.

BECOME A GUIDE

Share your knowledge and help people by answering questions.